ON GENERALIZED PARETO DISTRIBUTIONS

I. MIERLUS-MAZILU*

Abstract

This paper discusses a set of algorithms for numerical simulation of the Generalized Pareto Distribution and the propositions they are based on. The numerical results and the histogram of generating data are also presented.

Keywords: Generalized Pareto Distribution; numerical simulation
JEL classification: C15, C16, C44

1. Introduction

The Generalized Pareto Distribution (GPD) was introduced by Pikands (1975) and has since been further studied by Davison, Smith (1984), Castillo (1997, 2008) and others.

If we consider an unknown distribution function F of a random variable X, we are interested in estimating the distribution function uF of variable of x above a certain threshold u. The distribution function uF is so called the conditional excess distribution function and is defined as:

$$uF(\gamma | u, y| X > u) , 0 \leq \gamma \leq x_f - u ,$$

where: X is random variable, u is a given threshold, $\gamma = x - u$ are the excesses and x_f is the right endpoint of F.

We verify that F_u can be written in:

$$F_u(y) = \frac{F(x+y) - F(u)}{1 - F(u)} = \frac{F(x) - F(u)}{1 - F(u)} .$$

Pickands (1975) posed that for a large class of underlying distribution function F, the conditional excess distribution function $F_u(y)$, for u large, is well approximated by:

$$F_u(y) \approx F(\gamma, k, \sigma), u \rightarrow \infty$$

where:

* Technical University of Civil Engineering, Bucharest, email mm@mm.utcb.ro

Romanian Journal of Economic Forecasting – 1/2010
\[F(y; k, \sigma) = \begin{cases}
1 - \left(1 - \frac{ky}{\sigma}\right)^{\frac{1}{k}} & k \neq 0, \ \sigma > 0 \\
1 - e^{-\frac{y}{\sigma}} & k = 0, \ \sigma > 0
\end{cases} \]

for \(y \in [0,(x_{p} - u)] \), if \(k \leq 0 \), and \(y \in \left[0, \frac{\sigma}{k}\right] \), if \(k > 0 \). \(F(\cdot, k, \sigma) \) is the so-called Generalized Pareto Distribution. If \(x \) is defined as \(x = u + y \) the GPD can also be expressed as a function of \(x \).

Definition 1 Castillo (1997): The random variable \(X \) has a generalized Pareto distribution \(GPD(k, \sigma) \) if the cumulative distribution function of \(X \) is given by

\[F(x; k, \sigma) = \begin{cases}
1 - \left(1 - \frac{kx}{\sigma}\right)^{\frac{1}{k}} & k \neq 0, \ \sigma > 0 \\
1 - e^{-\frac{x}{\sigma}} & k = 0, \ \sigma > 0
\end{cases} \]

where: \(\sigma \) and \(k \) are scale and shape parameters, \(x > 0 \) for \(k \leq 0 \) and \(x \in \left[0, \frac{\sigma}{k}\right] \) for \(k > 0 \).

Remark 1:
- When \(k = 0 \), the \(GPD(k, \sigma) \) reduces to the exponential distribution with mean's: \(Exp(\sigma) \).
- When \(k = 1 \), the \(GPD(k, \sigma) \) becomes uniform: \(U[0,\sigma] \).
- When \(k < 0 \), the \(GPD(k, \sigma) \) reduces to the \(Pareto(k_1, a, c) \) distribution of the second kind.

Definition 2 Castillo (2008): The random variable \(X \) has the \(Pareto(k_1, a, c) \) distribution of the second kind if the cumulative distribution function of \(X \) is given by

\[F(x; k_1, a, c) = 1 - \frac{k_1}{(x + c)^a}. \]

2. Algorithm for Numerical Simulation

2.1. The inverse method

This method is based on the following lemma (Smirnov-Hincin).
Lemma 1: Let \(X \) be a random variable having \(F \), the cumulative distribution function, inversable, and let \(U \) be a uniform random variable on \((0,1)\). Then \(Y = F^{-1}(U) \) has the same cumulative distribution function with \(X \) (e. g. \(Y \) is a sample of \(X \)).

Proof: \[P(Y < y) = P(F^{-1}(U) < y) = P(U < F(y)) = F(y), \] \(U \) being uniformly distributed on \((0,1)\) - q.e.d.

According to Lemma 1, we can write the following algorithm.

Al. (Algorithm for numerical simulation of the \(GPD(k, \sigma) \) random variable using the inverse method)

\(S_0 \) Make suitable initializations; Input: \(k, \sigma \);

\(S_1 \) if \(k = 0 \) then

\[
\text{repeat}
\begin{align*}
& \text{Generate } U \rightarrow U(0,1); \quad X = -\frac{1}{\sigma} \ln U \\
& \text{until stop condition}
\end{align*}
\]

else

\[
\text{if } k = 1 \text{ then}
\begin{align*}
& \text{repeat} \\
& \text{Generate } U \rightarrow U(0,1); \quad X := \sigma \cdot U \\
& \text{until stop condition}
\end{align*}
\]

else

\[
\text{input: } a = \frac{\sigma}{k};
\]

\[
\text{repeat}
\begin{align*}
& \text{Generate } U \rightarrow U(0,1); \quad X = a \cdot (1 - U^k)
\end{align*}
\]

until stop condition

\(S_2 \) Stop

2.2. The method based on the transformation of the standard exponential variable

We consider the case when \(k > 0 \) and \(x \in \left(0, \frac{\sigma}{k}\right)\), according to Remark 1.

Proposition 1: Let \(Y \rightarrow \text{Exp}(1) \). Then \(X = \frac{\sigma}{k}(1 - e^{-xy}) \) is a \(GPD(k, \sigma) \) random variable.

Proof:
\[F(x) = P(X < x) = P\left(\frac{\sigma}{k} (1 - e^{-kY}) < x \right) = P\left(1 - e^{-kY} < \frac{kx}{\sigma} \right) = P\left(1 - \frac{kx}{\sigma} < e^{-kY} \right) = \\
= P\left(\ln\left(1 - \frac{kx}{\sigma} \right) < -kY \right) = P\left(Y < -\frac{1}{k} \ln\left(1 - \frac{kx}{\sigma} \right) \right) = P\left(Y < -\ln\left(1 - \frac{kx}{\sigma} \right)^{\frac{1}{k}} \right) = \\
\frac{Y \to \text{Exp}(1)}{1 - e^{-\ln\left(1 - \frac{kx}{\sigma} \right)^{\frac{1}{k}}}} = 1 - \left(1 - \frac{kx}{\sigma} \right)^{\frac{1}{k}} \text{ for } x \in \left(0, \frac{\sigma}{k} \right)\]

and \(k > 0 \) - q.e.d.

Remark 2: Since \(Y \to \text{Exp}(1) \), with the inverse method we have \(Y = -\ln(U) \), \(U \to U(0,1) \) and thus we obtain: \(X = \frac{\sigma}{k} (1 - e^{-k(-\ln(U))}) = \frac{\sigma}{k} (1 - e^{\ln(U^k)}) = \frac{\sigma}{k} (1 - U^k) \).

Based on the proposition above, we have the following algorithm:

AEx. (Algorithm for numerical simulation of the generalized Pareto distribution \(\text{GPD}(k, \sigma) \) starting from a standard exponential random variable)

\[S_0 \quad \text{Make suitable initializations; Input } k, \sigma; \text{ Calculate } \alpha = \frac{\sigma}{k}; \]

\[S_1 \quad \text{repeat} \]

\[\text{Generate } U \to U(0,1); \quad X := \alpha \left(1 - U^k \right) \]

\[\text{until stop condition} \]

\[S_2 \quad \text{Stop} \]

2.3. The mixture method

We consider the case when \(k < 0, \sigma > 0 \) and \(x > 0 \).

Proposition 2: Castillo (1997) Let \(X_\theta \to G(x, \theta) = 1 - e^{-x^\theta} \) with \(x > 0, \sigma > 0 \), \(k < 0 \) and let \(\theta > 0 \), \(\theta \) a sample of the random variable \(\Theta \to \text{Gamma}\left(0,1,-\frac{1}{k} \right) \).

Then the random variable \(X \) obtained from mixing the two random variables \(X_\theta \) and \(\Theta \) is a \(\text{GPD}(k, \sigma) \) random variable.

Proof: \(X_\theta \to 1 - e^{-x^\theta}, \Theta \to \frac{1}{\Gamma\left(-\frac{1}{k} \right)} e^{-\theta} \)

We calculate the cumulative distribution function of the random variable \(X \):
On Generalized Pareto Distributions

\[
F(x) = P(X < x) = \int_{0}^{\infty} \left(1 - e^{-\theta x}\right) \frac{1}{\Gamma\left(\frac{1}{k}\right)} e^{-\theta \frac{1}{k}} \, d\theta = \frac{1}{\Gamma\left(\frac{1}{k}\right)} \int_{0}^{\infty} e^{-\theta \left(\frac{1}{k}\right)} \cdot \left[\theta \left(1 - \frac{kx}{\sigma}\right)\right]^{-\frac{1}{k}} \, d\theta = \frac{1}{\Gamma\left(\frac{1}{k}\right)} \int_{0}^{\infty} e^{-\theta \left(\frac{1}{k}\right)} \cdot \left[\theta \left(1 - \frac{kx}{\sigma}\right)\right]^{-\frac{1}{k}} \, d\theta = 1 - \left(1 - \frac{kx}{\sigma}\right)^{\frac{1}{k}} - \text{q.e.d.}
\]

Based on the proposition above we can write the following algorithm:

AMm. *(Algorithm for numerical simulation of the GPD\((k, \sigma)\) distribution by the mixture method)*

- **S\(_{0}\)** Make suitable initializations; Input \(k, \sigma, \alpha = \frac{1}{k}, \beta = \frac{\sigma}{k}\)
- **S\(_{1}\)** repeat

 Generate \(\theta \rightarrow \text{Gamma}\left(0, 1, -\frac{1}{k}\right)\)

 Generate \(U \rightarrow U(0, 1)\) \{\(U\) and \(\theta\) are independent\);

 Deliver \(X := \frac{\beta}{\theta} \ln U\)

 until stop condition;

- **S\(_{2}\)** Stop

The random variable \(X_\theta\) is obtained by the inverse method, as before.

There are several methods for simulation of Gamma distribution. Here we will remind only some of them.

Therefore, the next problem is how we can generate \(X\) a Gamma\((0,1, \nu)\) random variable.

Romanian Journal of Economic Forecasting – 1/2010
2.3.1. The case when the parameter is greater than one

A rejection enveloping algorithm

This method is based on the following theorem:

Theorem 1 Văduva (1977): Let \(\hat{Y} \) be a random vector, to be generated, having the probability density function \(f(y), y \in R^m \) and \(Z \), another random vector, which can be generated, having the probability density function \(h(z), z \in R^n \) such as \(P(h(Z)) = 0 \). Assume that there is a positive and finite constant \(\alpha \) such as:

\[
\frac{f(x)}{h(x)} \leq \alpha, \quad \forall x \in R^m, 1 < \alpha < \infty
\]

If \(U \) is an uniform \((0,1)\) random variate, independent from \(Z \), then the conditional probability density function of \(Z \), given that \(0 \leq U \leq \frac{f(Z)}{a h(Z)} \) is \(f(y) \).

The rejection procedure based on this theorem is sometimes called the enveloping procedure and the acceptance probability is \(p_a = \frac{1}{a} \).

If in Theorem 2 we consider the case \(m = 1 \), and that

\[
f(y) = \frac{1}{\Gamma(v)} y^{v-1} e^{-y} I_{(0,\infty)}(y), v \geq 1 \quad \text{and} \quad h(z) = \frac{k}{1 + (z-(v-1))^2}, z \geq 0, c \geq 2v - 1
\]

meaning that \(h(z) \) is the Nonstandard Cauchy Distribution, centered in \(v-1 \) with \(c = 2v - 1 \) and \(K \) is a norming constant. It is shown that

\[
a = \frac{1}{K \Gamma(v)} (v-1)^{v-1} e^{-(v-1)}, \quad p_a = \frac{1}{a}
\]

and hence the average number of trials (meaning that pairs of \((U,Z) \)) for obtaining a sampling value of \(Y \) is \(e_n = \pi \sqrt{e} (v-1)^{v-1} \Gamma(v) \).

Note that \(e_n \leq \sqrt{\pi} \) for \(1 < v < \infty \), which illustrates a good performance of the algorithm.

A disadvantage of this algorithm is that it uses three elementary functions \(\tan, e^x, \log \) which may increase computing time and anyway will reduce accuracy.

Therefore, Devroye (1986) have proposed a composition-rejection algorithm based on decomposition of the gamma density \(f(y) \) in the form:

\[
f(y) = p_1 f_1(y) + p_2 f_2(y), \quad (p_1 + p_2 = 1)
\]

\[
f_1(y) = 0 \quad \text{if} \quad y \notin [0,b]
\]
On Generalized Pareto Distributions

\[f_2(y) = 0 \quad \text{if} \quad y \notin (b, \infty) \]

where: \(f_1(y) \) is enveloped by the truncated normal on \([0,b]\) and \(f_2(y) \) is enveloped by the truncated exponential on \((0,\infty)\), \(b \) being properly selected.

This is one of the best algorithms for generating a gamma random variable when \(\nu > 1 \).

An algorithm based on the ratio-of-uniforms

A new fast and more accurate algorithm for generating a standard gamma variate with the parameter \(\nu > 1 \) will be presented. This algorithm is based on the following:

Theorem 2 Váduva (1977): If the probability density function \(f \) of the random vector \(X \) is in the form

\[f(x) = \frac{1}{H} h(x), \quad H = \int_{\mathbb{R}^n} f(x) \, dx, \quad d(m) = \frac{1}{mc+1}, \quad \varphi: \mathbb{R}^{m+1} \to \mathbb{R}^m \]

is in the form:

\[\varphi(v_0, v_1, \ldots, v_m) = \left(\frac{v_1}{v_0}, \frac{v_2}{v_0}, \ldots, \frac{v_m}{v_0} \right), \quad c > 0 \]

and \(C = \left\{ (v_0, v_1, \ldots, v_m) \mid \gamma(v_0, v_1, \ldots, v_m) \leq 0 \right\} \) is bounded, and if \(V \) is a random vector uniformly distributed on \(C \), then the random vector \(Y = \varphi(V) \) has the probability density function \(f \).

In Theorem 2 we consider \(m = 1 \) and

\[f(x) = \frac{1}{H} h(x), \quad H = \Gamma(\nu), \quad h(x) = x^{\nu-1} e^{-x} \]

\[f(x) = \frac{1}{H} h(x), \quad H = \Gamma(\nu), \quad h(x) = x^{\nu-1} e^{-x} \]

\[\gamma(v_0, v_1) = \log(v_0) - \frac{1}{c+1} \left[(\nu-1) \log \left(\frac{v_1}{v_0} \right) - \frac{v_1}{v_0} \right] \]

then, using Theorem 2, after some calculations, we have

\[a_0 = 0, \quad b_0 = (\nu-1)^{\frac{1}{c+1}} e^{\frac{1}{c+1}}, \quad a_1 = 0, \quad b_1 = \left(\frac{c\nu+1}{c} \right)^{\frac{c+1}{c+1}} e^{\frac{c+1}{c+1}} \]

\[p_a(c) = \frac{\Gamma(\nu)}{(c+1)(\nu-1)^{\frac{1}{c+1}} \left(\frac{c\nu+1}{c+1} \right)^{\frac{c+1}{c+1}} e^{-\nu}} \]

Now the final algorithm can be described easily.
An interesting question concerns the finding of the “best” constant $c > 0$ to maximize the acceptance probability $p_x(c)$. The analytical treatments of this problem necessitate complicated calculations. Therefore we designed a special procedure which, starting from the initial value $c_0 = 1$, searches (using a small step of variation of c) a positive value c in the neighborhood of this initial value, to give a greater probability. It results that $\lim_{v \to \infty} p_x(c) = 0$, which shows that the algorithm has a bad behavior for large values of v. However, for not very large values of v (e.g. $v \leq 34$) it is faster than the algorithm based on a Cauchy envelope, as computer tests have shown.

2.3.2. The case when the parameter $0 < \lambda < 1$

A rejection algorithm

This algorithm uses theorem 1 where

$$f(y) = \frac{1}{\Gamma(v)} y^{v-1} e^{-y} I_{(0,\infty)}(y), \quad 0 < v < 1, \quad h(z) = v z^{v-1} e^{-z} I_{(0,\infty)}(z)$$

(meaning that h is a standard Weibull probability density function) which gives

$$\frac{f(y)}{h(y)} \leq a(v) = \frac{1}{\Gamma(v + 1)} e^{\xi(v-\xi)}, \quad \xi = v^{1-v}, \quad p_u = \frac{1}{a}$$

In our application we have to take into account that the behavior of the rejection algorithm is good mainly for $0.12 \leq v \leq 0.9999$ as computer tests have shown (Văduva, 1977).

3. Numerical Results

In this paper, we implement all these three algorithms: AI{Algorithm for numerical simulation of the $GPD(k,\sigma)$ random variable using the inverse method}, AEx{Algorithm for numerical simulation of the generalized Pareto distribution $GPD(k,\sigma)$ starting from a standard exponential random variable}, AMn{Algorithm for numerical simulation of the $GPD(k,\sigma)$ distribution by the mixture method}. Numerical application was performed using Mathcad.
On Generalized Pareto Distributions

GPD(k, σ, N) :=

\[\begin{align*}
 &\text{for } i \in 1..N \quad \text{if } k = 0 \\
 &X_1 \leftarrow -\frac{\ln(\text{rand}(1))}{\sigma} \\
 &\text{for } i \in 1..N \quad \text{if } k = 1 \\
 &X_1 \leftarrow \sigma \cdot \text{rand}(1) \\
 &\text{otherwise} \\
 &a \leftarrow \frac{\sigma}{k} \\
 &\text{for } i \in 1..N \\
 &X_1 \leftarrow a \left(1 - \text{rand}(1)^k\right) \\
 &\text{return } X
\end{align*} \]

The general algorithm \(A \) was called 1000 times. We consider \(k = 2, \sigma = 2.5 \) in Figure 1 and \(k = 0, \sigma = 2.5 \) in Figure 2.

\[\begin{align*}
 &\text{for } i \in 1..N \\
 &X_1 \leftarrow \frac{\sigma}{k} \\
 &\text{return } X
\end{align*} \]

The general algorithm \(AEx \) was called 1000 times. We consider \(k = 2, \sigma = 2.5 \) in Figure 1. Also in Figure 4 we use \(AMn \) algorithm called 1000 times, with \(k = 2, \sigma = 2.5 \).

Fig. 1.

Histogama

Fig. 2.

Histogram
The histogram obtained on generated selection shows that the empirical distribution is similar to the theoretical distribution.

4. Example and Conclusions

The GPD has applications in a number of fields, including reliability studies, in the modelling of large insurance claims, as a failure time distribution. Also it plays an important role in modeling extreme events. A model is frequently used in the study of income distribution and in the analysis of extreme events, e.g. for the analysis of the precipitation data, in the flood frequency analysis, in the analysis of the data of greatest wave heights or sea levels, maximum winds loads on buildings, in the maximum rain fall analysis, in the analysis of greatest values of yearly floods, breaking strength of materials, aircraft loads, etc.

The GPD has been quite popular not only for flood frequency analysis but for fitting the distribution of extreme natural events in general.

Every portfolio of risk policies incurs losses of greater and lower amounts at irregular intervals. The sum of all the losses (paid & reserved) in any one-year period is described as the annual loss burden or simply total incurred claims amount. An insurance company generally decides to transfer the high cost of contingent capital to a third party, a reinsurance company.

It is possible to generate randomly a number of claims per year and to calculate each claim severity through the Generalized Pareto distribution. In this case if we calculate the economic risk capital defined as the difference between the expected loss, defined as the expected annual claims amount, and in this case the 99.93th quantile of the distribution corresponding to a Standard & Poor's A rating.

The analysis highlights the importance of a reinsurance program in terms of “capital absorption & release” because what happens in the tail of the loss distribution - where things can go very wrong and where the inevitable could sadly happen - has relevant impact on the capital base. This implicitly demonstrates that reinsurance decisions based on costs comparison could lead to wrong conclusions.
References

