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Abstract 

The increased volatility that characterized the markets during the last years 
emphasized the need for hedging. Given their industrial usage, the non-ferrous metals 
have a great importance for the economic activity. The volatility and unpredictability of 
metals prices create risks for an important number of companies and for the economy. 
The existence of basis risk leads to the need for the optimal hedge ratio estimation. 
Our paper estimates the optimal hedging ratio in the case of the non-ferrous metals 
traded on the London Metals Exchange using three methods: the ordinary least 
squares regression, the error-correction model, and  the auto regressive distributed 
lag model. It also provides an in-sample and an out-of-sample comparison between 
these three models. The results show that the optimal hedge ratio and hedging 
effectiveness increase with the hedging horizon, converging to 1 for long tenors. Our 
findings also show that the more complex models provide a greater in-sample hedging 
effectiveness, but for the out-of-sample analysis the increase in performance is not 
significant. 
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I. Introduction 

The increased volatility that characterized the markets during the last years 
emphasized the need for hedging. The basic principle of hedging is to combine a risk 
generating spot position with a contrary position in a futures contract or in another 
highly correlated asset. If the correlation between the spot and futures price would be 
perfect, then the naive one-to-one hedge ratio would lead to a variance in the hedged 
portfolio equal to zero. However, the correlation between the two prices is not perfect 
in reality (the basis risk) and the naïve hedging ratio is not the one that minimizes the 
hedged portfolio’s variance. In this context, we need to estimate the optimal hedging 
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ratio (OHR), which appears in the existing literature as being risk-minimizing or utility-
maximizing. 
In order to derive the OHR, the models that focus on the risk-minimizing objective use 
different risk measures to be minimized, such as: variance [Johnson (1960), 
Ederington (1979), Myers and Thompson (1989)], the mean-Gini coefficient [Lien and 
Luo (1993), Shalit (1995)], the generalized semivariance [Lien and Tse (2000)] or the 
mean generalized semivariance [Chen et al., 2001)]. The utility-maximizing hedge 
ratio is derived by using specific functions of return and risk, which are discussed in 
Cecchetti et al., 1988), Kolb and Okunev (1993), Hsin et al., 1994), Bessembinder and 
Lemmon (2002) or in Cotter and Hanly (2012).  
The models used for OHR estimation range from simple to highly complex ones: 
ordinary least squares regression [Ederington (1979), Benet (1992)], error correction 
models [Ghosh (1995), Lien (1996)] or the conditional heteroskedastic methods 
[ARCH and GARCH: Cecchetti et al., 1988), Baillie and Myers (1991), Kroner and 
Sultan (1993), Floros and Vougas (2004)]. Chen et al., 2004) proposed a version of 
the error-correction models, the auto-regressive distributed lag model (ARDL), based 
on the simultaneous equations models considered by Hsiao (1997) and Pesaran 
(1997), obtaining a joint estimation of the short-run and long-run hedging ratio. Lee 
and Yoder (2007) and Alizadeh et al., 2008) estimated time-varying hedge ratios using 
a Markov regime switching model for markets such as corn and nickel, and crude oil, 
respectively. Power et al., 2013) estimated the OHR through a non-parametric copula 
GARCH model.  
Numerous studies compared the performance of the OHR estimated through several 
model and the results are mixed. For example, Juhl et al., 2012) show that the OLS 
regression and the error correction model lead to similar results when spot and futures 
prices are cointegrated, while Hsu et al., 2008) find that copula-based GARCH models 
perform better than OLS and other types of GARCH methods. Some studies take into 
account the impact of hedging horizon length on the optimal hedging ratio and 
hedging effectiveness [Ederington (1979), Geppert (1995), Chen et al., 2004), Juhl et 
al., 2012) and Armeanu et al., 2013)]. 
Our paper analyzes the optimal hedging ratio for the non-ferrous metals traded on the 
London Metals Exchange (LME), providing also a comparison between the hedging 
effectiveness of three different models: the OLS, the error correction model (ECM) and 
the auto regressive distributed model (ARDL), developed by Chen et al., 2004). The 
six metals (aluminum, copper, lead, nickel, tin and zinc) were chosen for their 
importance in the world economy, given by their industrial usage. Also, LME 
represents one of the most liquid commodity exchanges at global level. In addition, 
there are very few studies that focus on the non-ferrous metals market. Dewally and 
Mariott (2008) estimated OHR for the period 1998-2006 using two models: OLS and 
ARDL and with hedging horizons length up to 8 weeks. Dinica (2013) made an in-
sample comparison of the three discussed models for the period 2000-2012. Our 
study improves the research by adding an analysis of the non-ferrous metals prices 
and basis behavior, by adding an out-of-sample comparison between the three 
models and by expanding the data sample with one and a half years.     
The remainder of the paper is organized as follows. The second section provides a 
description of the methodology used and presents the database. In the third section 
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the empirical results obtained by estimating the OHR using the above models are 
discussed, while in the last section the conclusions are given.    

II. Methodology 

The first step of the methodology consists in discussing the spot prices evolutions of 
the six analyzed metals, together with some descriptive statistics, such as the mean, 
median, minimum, maximum or standard deviation. As mentioned above, the main 
reason for OHR estimation is the imperfect correlation between spot and futures 
prices. Thus, we further analyze the evolution of the basis (the difference between the 
futures and spot prices), also providing the basis descriptive statistics. 
The next step of the methodology consists in testing the stationarity and cointegration 
of data series. As Cotter and Hanly (2006) mentioned, non-stationary data usage in 
estimations can lead to spurious results. In addition, Juhl et al., 2012) explained that 
the proper specification of the model is dependent on the behavior of the time series. 
Given that the series are not unit root processes, a simple regression on levels or 
levels or price changes can be applied. However, if the series are unit root processes, 
but are not cointegrated, a regression on price changes can be appropriate. Finally, in 
the case that time series are both unit root processes and cointegrated, an error-
correction term can be included into the regression. For testing the unit root 
hypothesis, the augmented Dickey-Fuller (ADF) test, the Phillips-Perron (PP) test and 
the Kwiatkovski, Phillips, Schmidt and Shin (KPSS) test were applied. In order to test 
for cointegration between the spot and futures prices we used the Johansen 
cointegration test.  
Starting from Pesaran (1997) bivariate model, one can obtain different models to 
estimate the optimal hedging ratio. The same derivation method was used by Lee et 
al., 2009). The Pesaran (1997) bivariate model illustrates the following: 
  (1) 
  (2) 
assuming that  

 
where:  is the covariance between  and , and  and  are the variances of 

 and . 
The simplest way to estimate the optimal hedge ratio is to run the OLS (ordinary least 
squares) model, where β is the estimation of . Assuming that both spot and futures 
prices follow a random walk, we can set that  and  in the above 
bivariate model. In this case, the equations can be written as follows:  
  (3) 
  (4) 
Taking into consideration the assumption that  and  are jointly normally 
distributed, we have:  
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  (5) 
where: /  represents the regression coefficient of  on , and  is distributed 
independently of . Based on this, the OLS model can be estimated.  
   (OLS) (6) 

 
The estimation of the minimum variance hedging ratio is given by  and equals / 

 under the normal joint condition.  
The OLS model specification assumes the absence of autocorrelation and 
heteroskedasticity in the first differences. Also, the above relation is used to estimate 
the short-run hedge ratio, representing a short-run relation between the two variables. 
Another model used to estimate the optimal hedging ratio is the error-correction model 
(ECM). Scutaru (2011) shows that the ECM is used mainly in short-term forecast 
because the long-term adjustment to equilibrium is relatively slow. The long-run 
relation between spot and futures price is represented by the following equation: 
  (7) 
Assuming that the series are cointegrated and the spot price and the futures price are 
unit-root processes, Pesaran (1997) concludes that it must be either 

 or  in the above 
bivariate model. In this case, the equations (1) and (2) can be written as follows: 
  (8) 
  (9) 
If  and  are jointly normally distributed, the equation (10) holds. Having 

, equations (6) and (7) can be written as follows:  
   (ECM) (10) 

 
where: , representing the lagged error term of the long-run 
relation (7). The coefficient  is the hedging ratio estimated using the error-correction 
model, which will be denoted by ECM from this point forward in our analysis. 
Chou et al., 1996), Floros and Vougas (2004) and Degiannakis and Floros (2010), 
following the method proposed by Engle and Granger (1987), estimated the optimal 
hedging ratio using an error correction model with lagged values of the differences in 
spot and futures prices.  

  (11) 
The optimal lag lengths of spot and futures differences m and n are decided by 
iterating for each lag until the autocorrelation of the residuals is eliminated. In our 
study, we used an error correction model without lagged differences because the 
residuals were not autocorrelated.  
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Chen et al., 2004) propose a version of the error-correction models, based on the 
simultaneous equations models considered by Hsiao (1997) and Pesaran (1997), 
obtaining a joint estimation of the short-run and long-run hedging ratio. This model is 
also called the autoregressive distributed lag (ARDL) cointegration model. 
Pesaran (1997) argues that the existence of a long-run relation between the spot and 
futures price does not depend on whether the futures price is integrated of order 1. If 
there is a long-run relationship between the two prices, then it must be either 

 or . In this case, the bivariate 
model becomes:  
  (12) 
  (13) 
If  and  are jointly normally distributed, the equation (10) holds. Having 

, equations (12) and (13) can be written as follows:  
  (ARDL) (13) 
The model incorporates both short and long-run relations and the short-run hedge 
ratio is given by , while the long-run hedge ratio is given by - / .This equation 
will be denoted by ARDL from this point forward in our analysis.  
Further, the different models are compared based on the hedging effectiveness of the 
estimated OHR. For the in-sample analysis, the hedging effectiveness is given by the 
adjusted  statistic. For comparing the out-of-sample models, we need to calculate 
the hedging effectiveness (HE) indicator, given by: 

  (14) 
The hedging effectiveness indicator shows how much variance of the unhedged 
portfolio is eliminated through hedging. The models having the greatest values of this 
indicator will be considered as the most effective for the hedging purpose.  
In the existing literature, the relation between hedging horizon and hedging ratio it is 
also analyzed, namely the determination coefficient. In order to test for the impact of 
the length of the hedging horizon on the optimal hedge ratio and on the hedging 
effectiveness, two regressions are used, the endogenous term being the hedging 
ratios estimated above, namely the adjusted  obtained, while the exogenous term is 
the length of the hedging horizon, expressed in weeks. More specifically, the 
regressions used are: 
    (15) 
    (16) 
where:  is the hedging horizon, expressed in weeks. 
The database used for the analysis is represented by the daily cash and futures prices 
of the non-ferrous metals traded on the London Metals Exchange (LME) during the 
period April 3, 2000-September 30, 2013. For each metal (aluminum, copper, lead, 
nickel, tin and zinc) and for each type of price (cash or futures) there are 3405 
observations. The futures price is represented by the nearest-to-maturity contract 
price, while for the cash price the LME official settlement price is used, both expressed 
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in USD/ton. Compared with other studies, our dataset has the longest range (13.5 
years) and is the most recent.  
Also, in order to compute the optimal hedge ratio for different hedging horizons we 
matched the data frequency with the hedging horizon. For example, in order to 
compute the 1 week hedging ratio we used weekly data and for computing the 1 day 
hedging ratio we used daily data. By this methodology, we avoid the problems 
associated with data overlapping, like the existence of autocorrelated error terms in 
the regression. A detailed description of this issue can be found in Chen et al., 2004).  
The sample size of our study allowed us to use non-overlapped data in order to 
compute the hedging ratio for 13 different hedging horizons, from 1 day to 12 weeks. 
In order to compute a hedging ratio for one metal and for one hedging horizon length, 
a regression using a specific model was estimated. Having 6 metals and 13 hedging 
horizons, 78 hedging ratios were estimated for each analyzed model.  
In order to run the out-of-sample hedging effectiveness analysis, the database was 
split into two parts. The first half was used to re-estimate the hedging ratios using the 
same methodology as above, while the second half was used to compute the 
variances of the portfolios obtained by hedging with the estimated hedging ratios. We 
run the out-of-sample analysis only for aluminum and copper, the most representative 
metals in our sample. 

III. Empirical results 

As earlier mentioned, the first step of the methodology consists in discussing the spot 
price evolutions of the six analyzed metals. Figure 1 depicts the evolutions of the 
analyzed metals’ prices during the considered period.  

Figure 1 
Price 
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Source: London Metals Exchange.  

As one can notice, the prices of the six analyzed metals show a volatile evolution 
during the period 2000-2013. The first period of the sample, between 2000 and 2003 
is characterized by the smallest price changes, without a definite trend. However, 
starting in 2004, as a result of better economic conditions and as commodities were 
considered a new asset class and included into financial portfolios, the prices saw a 
generalized surge at an increased pace. The prices of the six analyzed metals peaked 
around 2007. During the financial crisis, the prices sharply declined as a result of the 
economic activity contraction. However, starting with 2009, the prices rose again, as 
the economy showed signs of recovery. After the financial crisis, two of the six 
analyzed metals registered new highs: copper and tin, while the other four metals 
recovered only partly the decline in prices.  
The data presented in Table 1 emphasize even more the volatile behavior of the six 
metals price evolution during the analyzed period. Thus, the ratios of the maximum to 
the minimum prices range between 2.65 in the case of aluminum and 12.26 in the 
case of nickel and the swings between the minimum and maximum prices were made 
in periods of just a few years. The smallest standard deviation is that of aluminum, the 
least volatile metal in the sample. The greatest standard deviation is that of nickel, of 
around 9102 USD/ton, but the highest ratio of the standard deviation to the mean 
throughout the sample, which is a better approximation for volatility, appears in the 
case of tin: 59.25%.  
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Table 1 
Descriptive Statistics – Spot Prices 

 Aluminum Copper Lead Nickel Tin Zinc 
Mean 1,956.90 5,085.93 1,449.72 16,903.12 12,808.58 1,744.41 
Median 1,873.50 5,290.00 1,301.00 15,450.00 10,600.00 1,778.00 
Minimum 1,243.00 1,319.00 399.00 4,420.00 3,595.00 725.50 
Maximum 3,291.50 10,148.00 3,980.00 54,200.00 33,255.00 4,619.50 
Maximum to 
minimum price ratio 

2.65 7.69 9.97 12.26 9.25 6.37 

Standard deviation 485.55 2,750.77 835.04 9,102.53 7,589.67 851.51 
Source: Authors’ calculations. 

The analysis of price evolutions during the sample and the descriptive statistics outline 
that the prices of the nonferrous metals traded at LME are highly volatile and 
unpredictable, emphasizing the need for hedging the risks arising from this behavior.  
In addition, we further discuss the evolution of the basis (the difference between the 
spot and futures prices), depicted in Figure 2. As one may see, in all cases the basis 
significantly increased during the analyzed period and it was characterized by a 
volatile and unpredictable behavior. 

Figure 2 
Basis Evolutions 

-400

-300

-200

-100

0

100

200

00 01 02 03 04 05 06 07 08 09 10 11 12 13

ALUMINUM

-600

-400

-200

0

200

400

600

800

00 01 02 03 04 05 06 07 08 09 10 11 12 13

COPPER

-300

-200

-100

0

100

200

00 01 02 03 04 05 06 07 08 09 10 11 12 13

LEAD

-10,000

-8,000

-6,000

-4,000

-2,000

0

2,000

00 01 02 03 04 05 06 07 08 09 10 11 12 13

NICKEL

 



 The Optimal Hedging Ratio for Non-Ferrous Metals 

Romanian Journal of Economic Forecasting – XVII  (1) 2014 113 

  

-2,000

-1,000

0

1,000

2,000

00 01 02 03 04 05 06 07 08 09 10 11 12 13

TIN

-800

-600

-400

-200

0

200

400

00 01 02 03 04 05 06 07 08 09 10 11 12 13

ZINC

Source: Authors’ calculations. 

Table 2 presents the main descriptive statistics of the basis. The average value of the 
basis is positive in the case of three metals (aluminum, copper and zinc) and negative 
in the case of the rest. The median values are positive for all metals. However, both 
the mean and median values are not significantly different as compared to zero in all 
cases. The basis is characterized by extreme values, the maximum amplitude (the 
difference between the maximum and the minimum value) being much higher than the 
basis average. The basis amplitude is significant even compared with the mean price, 
ranging from 21.35% of the mean value in the case of copper to 66.41% in the case of 
nickel. The basis is also characterized by a large standard deviation, in all cases 
higher than the basis average or median value. 

Table 2 
Descriptive Statistics – Basis 

  Aluminum Copper Lead Nickel Tin Zinc 
Mean 6.53 1.66 -0.36 -53.94 -14.79 3.03 
Median 7.00 2.50 1.00 2.00 3.50 4.75 
Minimum  -303.50 -467.00 -288.00 -9,630.00 -1,610.00 -607.00 
Maximum 133.75 619.00 186.50 1,595.00 1,515.00 205.00 
Amplitude 437.25 1,086.00 474.50 11,225.00 3,125.00 812.00 
Standard deviation 24.07 73.28 29.96 520.27 204.53 40.66 
Source: Authors’ calculations. 

The above analysis of prices and basis evolutions emphasizes the volatile and 
unpredictable behavior of prices as a rationale for hedging and the volatile nature of 
the basis as an argument for the optimal hedge ratio estimation.  
The next step of the methodology consists in testing other two characteristics of the 
time series: stationarity and cointegration. In order to test the unit root hypothesis the 
augmented Dickey-Fuller (ADF) test, the Phillips-Perron (PP) test and the Kwiatkovski, 
Phillips, Schmidt and Shin (KPSS) test were applied and for testing the cointegration 
the Johansen cointegration test was used.  
The results are given in Table 3. The unit-root test results show that all the prices of 
the six analyzed metals are unit root processes and are integrated of order 1, the first 
differences being stationay. The Johansen test provides evidence that cash prices and 
futures prices series are co-integrated in the case of each metal.  
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Table 3 
Stationarity Tests 

ADF test PP test KPSS test 
Metal Series type 

t stat p value Adj. t stat p value LM - Stat. 
Cash -1.880 0.665 -1.834 0.688 0.856 Aluminum 
First Difference -59.567 0.000 -59.579 0.000 0.055 
Cash -1.886 0.661 -2.137 0.524 0.461 Copper 
First Difference -61.928 0.000 -61.850 0.000 0.060 
Cash -2.414 0.372 -2.450 0.354 0.469 Lead 
First Difference -59.663 0.000 -59.647 0.000 0.043 
Cash -1.502 0.829 -1.621 0.785 0.833 Nickel 
First Difference -57.197 0.000 -57.264 0.000 0.070 
Cash -2.718 0.229 -2.742 0.219 0.310 Tin 
First Difference -58.877 0.000 -58.874 0.000 0.045 
Cash -1.660 0.769 -1.653 0.772 0.759 Zinc 
First Difference -58.177 0.000 -58.180 0.000 0.081 

Critical values for ADF test: 1%: -3.432; 5%: -2.862; 10%: -2.567 
Critical values for PP test: 1%: -3.961; 5%: -3.411; 10%: -3.127 
Critical values for KPSS test: 1%: 0.216; 5%: 0.146; 10%: 0.119 
 

These results suggest that the regressions should be estimated on the basis of the 
first differences between prices in order to avoid spurious results, and that by adding 
an error-correction term to the model specification can lead to better performance. 

Table 4 
Johansen Cointegration Test 

Metal No cointegrating vector At most one 
Aluminum 331.31 3.47 
Copper 453.99 1.68 
Lead 349.48 2.61 
Nickel 232.60 2.87 
Tin 498.86 2.54 
Zinc 543.36 0.85 
Critical values: None - 1%: 20.04; 5%: 15.41;    At most one: 1%: 6.65; 5%: 3.76 

Source: Authors’ calculations. 
The paper goal is to derive the short-run and the long-run hedging ratio by applying 
the models described in the ‘Methodology’ section for the non-ferrous metals market 
during the analyzed period, to compare the three models’ hedging effectiveness both 
in-sample and out-of-sample and to quantify the impact of the hedging horizon on the 
optimal hedging ratio and on the hedging effectiveness. By applying the OLS model 
on the analyzed database, we obtained the results presented in Table 5. 



 The Optimal Hedging Ratio for Non-Ferrous Metals 

Romanian Journal of Economic Forecasting – XVII  (1) 2014 115 

  

Table 5  
Optimal Hedging Ratio Estimated with the OLS Model 

  Aluminum Copper Lead Nickel Tin Zinc 
Hedge ratio 0.449* 0.506* 0.565* 0.376* 0.588* 0.411* 1D 

Adjusted  0.236 0.282 0.321 0.197 0.329 0.258 

Hedge ratio 0.847* 0.898* 0.900* 0.848* 0.871* 0.823* 1W 

Adjusted  0.766 0.845 0.845 0.718 0.811 0.745 

Hedge ratio 0.910* 0.941* 0.945* 0.929* 0.919* 0.863* 2W 

Adjusted  0.867 0.918 0.911 0.874 0.916 0.848 

Hedge ratio 0.942* 0.942* 0.989 0.937** 0.950* 0.941* 3W 

Adjusted  0.914 0.951 0.941 0.816 0.926 0.926 

Hedge ratio 0.961** 0.958* 0.989 1.026 0.951* 0.928** 4W 

Adjusted  0.943 0.964 0.963 0.921 0.959 0.863 

Hedge ratio 0.966*** 0.991 0.986 1.039**** 0.974*** 1.019 5W 

Adjusted  0.953 0.967 0.975 0.926 0.968 0.965 

Hedge ratio 0.961*** 0.984 0.969*** 1.054* 1.004 0.921* 6W 

Adjusted  0.944 0.982 0.969 0.970 0.981 0.922 

Hedge ratio 0.995 0.978** 0.996 1.027 0.999 0.951 7W 

Adjusted  0.972 0.989 0.972 0.930 0.970 0.856 

Hedge ratio 0.994 0.968*** 0.989 1.102* 1.021 0.935* 8W 

Adjusted  0.971 0.967 0.977 0.967 0.981 0.974 

Hedge ratio 0.967**** 0.974**** 0.999 1.120* 0.978 0.991 9W 

Adjusted  0.964 0.981 0.972 0.944 0.980 0.957 

Hedge ratio 0.995 1.014 0.993 1.068* 0.982 1.051* 10W 

Adjusted  0.977 0.983 0.983 0.975 0.980 0.986 

Hedge ratio 0.980 1.001 0.985 0.961 0.987 0.974 11W 

Adjusted  0.978 0.991 0.976 0.948 0.989 0.848 

Hedge ratio 0.990 1.004 0.976 1.097* 1.043 0.996 12W 

Adjusted  0.985 0.984 0.972 0.982 0.992* 0.969 

Different of 1: * - significance at 1% level; ** - significance at 5% level;  
*** - significance at 10% level; **** - significance at 15% level 
Source: Authors’ calculations. 

The optimal hedging ratio derived by the OLS model is significantly lower than the 
naive one-to-one hedging ratio for the short hedging horizons. The optimal hedge ratio 
is less than 1 at the 1% significance level for the hedging horizons up to 2 weeks for 
all analyzed metals. Also, the results show that for 3 and 4-week hedging horizons 
generally the optimal hedging ratios are significantly different from 1. Starting with the 
5-week hedging horizon, the significances tend to be mixed, showing a convergence 
of the optimal hedge ratio to the unit value in the long run. Out of 78 calculated hedge 
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ratios, 33 are different by 1 at the 1% significance level, 4 at the 5% level, 5 at the 
10% significance level and 3 at the 15% significance level. 
By applying the ECM and the ARDL models, we obtained the results in Tables 6 
and 7.  

Table 6  
Optimal Hedging Ratio Estimated with the ECM Model 

    Aluminum Copper Lead Nickel Tin Zinc 
Hedge ratio 0.508* 0.565* 0.564* 0.449* 0.571* 0.484* 1D 

Adjusted  0.654 0.712 0.692 0.487 0.720 0.609 

Hedge ratio 0.892* 0.918* 0.918* 0.886* 0.889* 0.884* 1W 

Adjusted  0.871 0.921 0.920 0.831 0.907 0.868 

Hedge ratio 0.932* 0.938* 0.940* 0.969** 0.928* 0.913* 2W 

Adjusted  0.933 0.960 0.958 0.930 0.960 0.905 

Hedge ratio 0.983 0.980*** 0.969** 1.016 0.984 0.953** 3W 

Adjusted  0.951 0.974 0.969 0.903 0.962 0.959 

Hedge ratio 0.991 0.966* 0.997 1.027**** 0.965* 0.972**** 4W 

Adjusted  0.973 0.982 0.982 0.956 0.980 0.924 

Hedge ratio 0.975*** 0.976** 0.980** 1.028*** 0.952* 0.986 5W 

Adjusted  0.976 0.983 0.986 0.967 0.984 0.987 

Hedge ratio 1.008 0.997 0.984 1.030** 1.015**** 0.953* 6W 

Adjusted  0.971 0.989 0.982 0.981 0.990 0.960 

Hedge ratio 0.987 0.987*** 0.972** 1.047** 0.977** 1.021 7W 

Adjusted  0.986 0.995 0.989 0.971 0.986 0.925 

Hedge ratio 1.014 0.995 1.005 1.090* 1.020*** 0.998 8W 

Adjusted  0.986 0.985 0.989 0.983 0.990 0.985 

Hedge ratio 1.003 0.994 1.014 1.111* 1.005 0.976 9W 

Adjusted  0.974 0.990 0.986 0.963 0.988 0.976 

Hedge ratio 0.997 1.013 0.994 1.014 0.963* 1.044** 10W 

Adjusted  0.988 0.991 0.993 0.987 0.992 0.992 

Hedge ratio 1.013 1.001 1.003 1.063** 0.986 1.072* 11W 

Adjusted  0.988 0.996 0.991 0.974 0.994 0.932 

Hedge ratio 1.001 1.008 1.003 1.048* 1.024** 1.010 12W 

Adjusted  0.992 0.993 0.989 0.989 0.996 0.988 

Different of 1: * - significance at 1% level; ** - significance at 5% level;  
*** - significance at 10% level; **** - significance at 15% level 

Source: Authors’ calculations.  
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Table 7  
Optimal Hedging Ratio Estimated with the ARDL Model 

Aluminum Copper Lead   

 - /  Adj  - / Adj  - /  Adj  
1D 0.509* 1.000 0.654 0.565* 0.999 0.711 0.564* 1.000 0.692 
1W 0.893* 1.003 0.871 0.918* 1.000 0.921 0.918* 1.001 0.920 
2W 0.933* 1.003 0.933 0.938* 1.000 0.960 0.940* 1.001 0.958 
3W 0.983 1.002 0.951 0.980*** 0.999 0.973 0.969** 1.000 0.968 
4W 0.992 1.003 0.972 0.966* 0.998 0.982 0.997 0.998 0.982 
5W 0.976*** 1.003 0.975 0.976** 1.003 0.983 0.980*** 1.006 0.986 
6W 1.007 1.001 0.971 0.996 0.998 0.989 0.984 1.001 0.982 
7W 0.988 0.995 0.986 0.987*** 0.994 0.994 0.972** 0.996 0.988 
8W 1.013 1.001 0.985 0.995 0.998 0.985 1.004 1.000 0.988 
9W 1.002 1.010 0.974 0.994 1.000 0.990 1.014 1.004 0.986 
10W 0.997 1.006 0.988 1.013 1.005 0.991 0.995 1.007 0.993 
11W 1.012 1.001 0.988 1.001 0.996 0.996 1.003 0.995 0.990 
12W 1.001 0.999 0.992 1.007 0.996 0.992 1.003 0.997 0.989 

Nickel Tin Zinc   

 - /  Adj  - / Adj  - /  Adj  
1D 0.450* 1.016 0.487 0.571* 1.002 0.720 0.485* 1.005 0.609 
1W 0.887* 1.017 0.831 0.889* 1.003 0.907 0.885* 1.003 0.868 
2W 0.969** 1.014 0.930 0.928* 1.003 0.960 0.913* 1.007 0.905 
3W 1.016 1.024 0.902 0.984 1.002 0.962 0.954* 1.005 0.959 
4W 1.026**** 1.016 0.956 0.965* 1.001 0.980 0.973 1.005 0.923 
5W 1.028**** 1.023 0.966 0.953* 0.999 0.984 0.986 1.008 0.987 
6W 1.031** 1.020 0.981 1.015**** 1.001 0.990 0.954** 1.007 0.960 
7W 1.046** 0.999 0.971 0.975** 1.000 0.986 1.021 0.995 0.924 
8W 1.088* 1.022 0.982 1.020*** 0.999 0.990 0.998 1.003 0.984 
9W 1.109* 1.044 0.962 1.004 0.997 0.988 0.978 1.019 0.976 
10W 1.014 1.026 0.987 0.963* 0.999 0.992 1.043* 1.013 0.992 
11W 1.061** 1.002 0.973 0.986 1.003 0.994 1.071*** 1.009 0.931 
12W 1.046** 1.023 0.989 1.023** 1.001 0.996 1.009 0.995 0.988 
Different of 1: * - significance at 1% level; ** - significance at 5% level;  
*** - significance at 10% level; **** - significance at 15% level 
Source: Authors’ calculations.  

As in the case of the first model, the optimal hedging ratios derived by the ECM and 
the ARDL models are significantly lower than the naive hedging ratio for the short 
hedging horizons, up to 2 weeks, at the 1% significance level. However, starting with 
the 3 weeks hedging horizon, the significance of the differences tend to be mixed, 
showing a convergence of the optimal hedge ratio to the unit value in the long run; 
which results are similar with those obtained by applying the OLS regression.  
Out of 78 calculated hedging ratios using the ECM, 26 are different from 1 at the 1% 
significance level, 12 at the 5% significance level, 5 at the 10% significance level and 
3 at the 15% significance level. 
In addition, the long-run hedge ratio derived with the ARDL model is not different from 
the unit value. Concerning the short-run hedging ratio, out of 78 calculated ratios, 25 
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are different from 1 at the 1% significance level, 11 at the 5% significance level, 6 at 
the 10% significance level and 3 at the 15% significance level. 

Table 8 

Relation between Hedging Horizon and Hedging Ratio - the Adjusted  
  Hedging horizon -  Hedging horizon - adjusted   

b 0.0241 0.0310 OLS 
 0.3922 0.3769 

b 0.0220 0.0155 ECM 
 0.3872 0.3761 

b 0.0219 0.0155 ARDL 
 0.3859 0.3746 

Source: Authors’ calculations.  
The next step of the methodology consisted in analyzing the relation between the 
hedging horizons and the hedging ratio, namely the determination coefficient. The 
results are synthesized in Table 8. In all cases, the coefficients of the hedging horizon 
length are positive and strongly significant, showing that the optimal hedge ratio and 
the hedging effectiveness increase with the hedging horizon. 
The in-sample analysis of the three models shows that the optimal hedge ratio 
estimated by the ECM and the ARDL model is significantly higher than the one 
estimated by the OLS regression (at the 1% significance level). Also, the hedging ratio 
estimated with the ECM is not significantly different as compared with that estimated 
with the ARDL model.  
All the adjusted coefficients of determination are higher in the case of ECM and ARDL, 
showing a better in-sample hedging effectiveness achieved by applying more 
advanced models, as compared to OLS. The results are consistent with other results 
in literature. 
However, a more important comparison is made through the out-of-sample analysis. 
In order to run the out-of-sample analysis, we split the database into two parts. The 
first half (the first 6 years and 9 months) was used to estimate the optimal hedge ratio 
using the three models. The second half was used to calculate the hedging 
effectiveness of each model by the formula discussed in the methodology. The out-of-
sample analysis was performed for aluminum and copper, the most representative 
metals in our sample. Aluminum and copper accounted for more than 63% of the 
LME’s volume of futures contracts in 2013. Also, these metals have the highest 
correlation with the prices of the other four metals. The results are synthesized in 
Table 9.   

Table 9 
Out-of-sample Hedging Effectiveness Comparison 

Aluminum Copper   
HE OLS HE ECM HE ARDL HE OLS HE ECM HE ARDL 

1D 24.02% 24.28% 25.25% 28.43% 30.43% 30.43% 
1W 80.43% 80.48% 80.48% 83.79% 83.87% 83.87% 
2W 86.47% 86.88% 86.90% 89.96% 90.52% 90.52% 
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Aluminum Copper   
HE OLS HE ECM HE ARDL HE OLS HE ECM HE ARDL 

3W 93.07% 92.95% 93.01% 94.54% 95.23% 95.24% 
4W 93.26% 93.63% 93.69% 93.74% 94.91% 94.90% 
5W 96.35% 96.40% 96.49% 97.75% 97.65% 97.65% 
6W 97.11% 97.11% 97.17% 97.27% 97.40% 97.40% 
7W 96.20% 96.15% 96.19% 96.07% 96.12% 96.12% 
8W 95.65% 96.60% 96.59% 93.61% 96.72% 96.93% 
9W 98.64% 98.72% 98.72% 98.47% 98.66% 98.66% 
10W 98.31% 98.33% 98.29% 98.46% 98.35% 98.34% 
11W 99.02% 98.98% 99.01% 99.12% 99.15% 99.17% 
12W 97.64% 98.19% 98.34% 98.22% 98.23% 98.31% 
Source: Authors’ calculations.  
The hedging effectiveness increases in the case of all three models with the hedging 
horizon, showing once again that the most effective hedging is that for longer tenors. 
Generally, the hedging effectiveness indicators of the ECM and ARDL models are 
higher than those of the OLS regression, but the differences are not statistically 
significant. Thus, although still proven, the superiority of the more advanced models is 
starting to fade in the case of the out-of-sample analysis. However, this result cannot 
be statistically significant and further research on the topic is necessary.   

IV. Conclusions 

The increased volatility that characterized the markets in the last years emphasized 
the need for hedging. The basic principle of hedging is to combine a risk-generating 
spot position with a contrary position in a futures contract or in another highly 
correlated asset. When spot and futures prices are perfectly correlated, the naive one-
to-one hedge ratio leads to a perfect hedging, the price changes in spot being offset 
by the price changes in the futures contract. However, the difference between spot 
and futures prices is not constant over time, causing a basis risk. In this case, it is 
necessary to estimate the optimal hedging ratio that minimizes the hedged portfolio 
variance. Our paper estimates the optimal hedging ratio in the case of the non-ferrous 
metals traded at the London Metals Exchange using three methods: the ordinary least 
squares regression, the error-correction model, and  the auto regressive distributed 
lag model. 
The first step of the methodology consisted in discussing the spot prices evolutions of 
the six analyzed metals. The analysis of price evolutions during the sample and the 
descriptive statistics outline that the prices of the nonferrous metals traded at LME are 
highly volatile and unpredictable, emphasizing the need for hedging the risks arising 
from this behavior. In addition, we further discussed the evolution of the basis (the 
difference between the spot and futures prices), showing that the metals market is 
also characterized by an important basis risk. Thus, the analysis of prices and basis 
evolutions emphasizes the volatile and unpredictable behavior of prices as a rationale 
for hedging and the volatile nature of the basis as an argument for the optimal hedge 
ratio estimation in the case of the metals market.  
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The next step of the methodology consists in testing two other characteristics of the 
time series: stationarity and cointegration. The results show that all the prices of the 
six analyzed metals are unit root processes, integrated of order 1 and cointegrated.  
Then, we estimated the OHR using the above-mentioned three models. The results 
show that both the optimal hedge ratio and hedging effectiveness increase with the 
hedging horizon, converging to 1 for long tenors. Although the long term hedge ratio is 
not significantly different from the unit value, for short tenors the OHR is significantly 
lower than 1. The in-sample analysis shows that the more advanced models provide a 
better hedging effectiveness (shown by the fact that all the adjusted coefficients of 
determination are higher in the case of ECM and ARDL models). However, the 
superiority of the more advanced models is starting to fade in the case of the out-of-
sample analysis, but this result cannot be statistically significant and further research 
on the topic is necessary.   
The paper provides similar results with other papers in the literature for what it 
concerns the fact that both the OHR and hedging effectiveness increase with the 
hedging horizon and that the long-term hedge ratio is converging to 1. It also 
contributes to literature by providing the first out-of-sample comparison between the 
three models for the metals market. 
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