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Abstract 
This study empirically examines the effects of economic activities on air pollution, especially 
particulate matter 2.5 (PM2.5) and particulate matter 10 (PM10). Using monthly regional 
panel data, we explain which socioeconomic activities worsen air pollution levels. Our results 
show that some economic activities, such as manufacturing of chemical products and 
chemicals, and diesel consumption increase both PM10 and PM2.5 emission levels. As 
diesel consumption increases, PM10 emission level increases according to the GLS 
(generalized least squares) estimations. In addition, as the manufacturing of coke, briquettes, 
and petroleum products increases, the PM2.5 emission level increases. As the 
manufacturing of chemical products and chemicals increases, both PM10 and PM2.5 
emission levels increase in neighboring regions using SDM(b). Diesel consumption has also 
a positive effect on the increase in the PM2.5 emission level in neighboring regions using 
SDM(a). As the number of precipitation days increases, both PM10 and PM2.5 emission 
levels decrease according to the GLS estimates, SDM(b). We forecast that both PM10 and 
PM2.5 levels will continue to rise if people continue to engage in certain socioeconomic 
activities, such as chemicals, coke, briquettes, petroleum products manufacturing, and 
diesel consumption. However, serious levels of pollution may not necessarily arise in the 
future, as using new and renewable energy lowers the levels of both PM10 and PM2.5 
according to the SDM(a) and (b). These findings help to explain future air quality level 
forecasts using monthly regional data with spatial dependence.  
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1. Introduction 
No creature can live without air. As the word “airpocalypse” indicates, air pollution has 
become one of the biggest environmental issues that people can experience, and it 
threatens human health.4 It is calculated that exposure to air pollution causes millions of 
deaths and loss of healthy life annually. With the increasing demand for clean air in many 
regions, the World Health Organization (WHO) established air quality guidelines in 2006, 
titled Air Quality Guidelines: Global Update 2005. This publication provides health-based air 
quality guidelines for particulate matter and other major health-damaging air pollutants 
(WHO, 2006). The WHO updated these global air quality guidelines in 2021 and warned that 
particulate matter exposure can adversely affect human health (WHO, 2021). 

This study examines the socioeconomic activities that worsen air pollution levels, especially 
particulate matter 2.5 (PM2.5) and particulate matter 10 (PM10) emissions, in the Republic 
of Korea (hereafter, Korea). This study focuses on air pollution generation among various 
environmental issues for two reasons. First, the WHO’s air quality guidelines, which were 
first enacted in 2005, were updated recently in 2021. Air Quality Guidelines: Global Update 
2005 has significantly impacted worldwide abatement policies. Thus, most countries are 
expected to upgrade their air pollution-related policies according to updated guidelines. To 
support policymakers in their decision-making and to predict their policy effects, the results 
of this study provide an empirical analysis of the effects of economic activities on air pollution 
to allow future system improvements. Second, air pollution is not only unpleasant to look at 
but is also a key factor in human health and life satisfaction. It is also related to the 
phenomenon of increasing demand for clean air worldwide. 

In this study, we focus on air pollution in Korea, not in other regions, for two reasons. First, 
despite rapid economic development, air pollution levels in the Asian countries remain high. 
According to WHO, the annual population-weighted PM2.5 concentrations in South-East 
Asia were highest in 2019 (WHO, 2021). In particular, the mean population exposure to fine 
particulates (i.e., PM2.5) in Korea was the highest among the Organisation for Economic 
Cooperation and Development (OECD) countries and reached about 27.4 micrograms per 
cubic meter in 2019 (OECD, 2022). Second, air pollution significantly affects human health 
more than any other pollutant (WHO, 2021), and exposure to PM2.5 can trigger severe 
diseases. It should be noticed that it affects regional economies in the end (Schweitzer and 
Zhou, 2010). In Korea, the annual mortality attributed to exposure to PM2.5 is 427 per million 
inhabitants (OECD, 2022). Premature deaths due to PM2.5 exposure have generally 
decreased across the OECD, and reached an average of 275 per million inhabitants in 2019. 
According to OECD (2022), exposure to PM2.5 causes more than 500 premature deaths 
per million people annually in some countries, such as the Czech Republic, Greece, Slovak 
Republic, and Hungary. The premature deaths because of PM2.5 exposure incur a 

                                                        

4 The word “airpocalypse” was first used in 2013 by major newspapers, such as The Financial 
Times and The Guardian. It is a portmanteau word for “air” and “apocalypse” and was used to 
describe severe air pollution in China. At that time, the airborne toxic smog level in Beijing was 
nearly 30 times above the World Health Organization’s recommended limit. The source of 
newspapers: Jamil Anderlini. “‘Airpocalypse’ drives expats out of Beijing.” The Financial 
Times, 1 Apr 2013, accessed 29 March 2022. https://www.ft.com/content/46d11e30-99e9-
11e2-83ca-00144feabdc0; Jonathan Kaiman. “Chinese struggle through 'airpocalypse' smog.” 
The Guardian, 16 Feb 2013, accessed 29 March 2022. 
https://www.theguardian.com/world/2013/feb/16/chinese-struggle-through-airpocalypse-smog. 
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significant amount of social welfare costs, which is equivalent to 2.4% of the gross domestic 
product (GDP) (OECD, 2022). The premature death issue in other countries is even worse. 
The welfare costs of premature deaths attributed to PM2.5 pollution are equivalent to 5.8% 
of GDP worldwide, according to OECD (2022). Thus, it is necessary to examine domestic 
factors affecting air pollution.  

In this study, air pollution refers to the level of particulate matter. Particulate matter is a 
mixture of solid and liquid particles in the air and it is classified by particle size as PM10 (i.e., 
particles with an aerodynamic diameter less than or equal to 10μm) and PM2.5 (i.e., particles 
with an aerodynamic diameter less than or equal to 2.5μm) (WHO, 2021). It is too small to 
settle onto the Earth’s surface by gravity (Thai, Bernatik, and Kučera, 2021). This study 
empirically examines the effects of economic activities on air pollution, especially particulate 
matter (i.e., PM2.5 and PM10) in Korea. Using monthly regional data, it explains the 
worsening air pollution emission levels. 

The remainder of this paper is organized as follows. In Section 2, we review the existing 
literature on the causes of air pollution and spatial analysis in environmental economics. 
Section 3 explains the study’s empirical methodology and data. Section 4 presents the 
empirical results. The last section summarizes the test results and concludes. 

2. Related Literature 
The non-stationarity of macro variables used in the panel model becomes one of the 
important issues in analysis. Therefore, the unit roots test in heterogeneous panels has been 
debated for the past decade (Pesaran, 2007). Maddala and Wu (1999) compare the Levin-
Lin tests, the Im-Pesaran-Shin (IPS) test, and the Fisher test. Moon and Perron (2004) 
explain unit root test statistics for large n and T panels in which cross-sections are correlated. 
The heterogeneous panel is also one of the main issues in panel analysis. Since panel data 
has been widely used for various empirical analyses recently, several empirical studies have 
tried to develop a methodology that is more suitable for each characteristic of panel data. 
Pesaran and Smith (1995) present theoretical and empirical work on the inconsistency of 
the pooled estimators in dynamic heterogeneous panel models. Im, Pesaran, and Shin 
(2003) provide unit root tests for dynamic heterogeneous panels. Phillips and Sul (2003) 
explain the coefficient homogeneity test under cross-section dependence. They also explain 
the sample bias problem in dynamic panel regressions. The new methodology named 
PANIC is introduced by Bai and Ng (2004). The PANIC means panel analysis of 
nonstationarity in idiosyncratic and common components. Andrews (2005) deals with 
regression models for cross-section data under cross-section dependence due to 
macroeconomic shocks. The new regression test of convergence is developed by Phillips 
and Sul (2007) and they explain it with some economic examples. 
Some studies showed that air pollution affects socioeconomic factors. Cho, Lee, and Kim 
(2013) investigate the relationship between air pollution and low birth weight in Korea. They 
show that the probability of low birth weight is expected to increase because of the mother’s 
exposure to ozone during the first trimester and carbon monoxide or sulfur dioxide during 
the third trimester. Rupasingha, Goetz, Debertin, and Pagoulatos (2004) describe the 
relationship between personal income and pollution in the US using spatial econometric 
analysis. Ersin and Bildirici (2019) examine the connection among carbon dioxide emissions, 
gas prices, and levels of economic prosperity using data from the US and the UK from 1861 
to 2012 and 1871 to 2012. They explain that economic growth rates have asymmetric 
impacts on emissions during both expansion and recession periods in both countries. 
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However, research on the socioeconomic activities that cause air pollution is lacking.5 Thus, 
this study aims to analyze the effects of economic activities on air pollution. 

In addition, recent studies highlight the seriousness of air pollution in Korea and analyze 
Korean cases. Yi and Sung (forthcoming) investigate the effects of aged coal-fired 
generators on PM2.5 using the difference-in-differences method. They show that Korea’s 
shutting down policy of old coal-fired power plants reduces daily PM2.5. These results differ 
from those of previous studies in that they control for the effects of wind and overseas 
pollutants. Chung, Kim, and Kim (2019) examine the relationship between particulate matter 
and pedestrian street volumes in Korea. They find that the PM10 concentration reduces 
street pedestrian volumes. These findings prove that deteriorating air quality impacts both 
people’s health and the local economy. Kang, Suh, and Yu (2019) examine the relationship 
between air pollution and retail sales using monthly regional panel data from Korea. They 
show that the monthly retail sales fall by 0.1% generally as the number of additional days of 
exposure to the PM10 level above 80 μg/㎥increased. 

Several studies highlight the importance of incorporating geographic information and spatial 
analysis into environmental research. Elhorst (2003) introduces the importance of panel data 
with spatial error autocorrelation or a spatially lagged dependent variable through the 
analysis of four spatial panel data models: the fixed effects model, the random effects model, 
the fixed coefficients model, and the random coefficients model. Anselin (2001) describes 
how spatial econometric methods can be used in environmental and resource economics 
and why these methods should be used. First, environmental issues are often identified from 
physical measurements that result from spatial sampling. Second, most environmental and 
resource economics research uses a combination of data from different sources. These 
integrated data from various sources tend to be spatially dependent. Thus, spatial analysis 
is necessary to conduct applied research in environmental economics (Anselin, 1988). 
Social sciences, including environmental economics, are often characterized by high spatial 
dependence. Thus, inaccurate results tend to be derived if spatial dependence is not 
considered. Spatial dependence exists when one observation in a sample of cross-sectional 
observations depends on other cross-sectional observations (Rupasingha, Goetz, Debertin, 
and Pagoulatos, 2004). Some ecological problems, such as pollution, water quality, 
biodiversity, and global climate change, are based on spatial processes, implying that spatial 
relationships must be acknowledged in the related econometric models (Bockstael, 1996). 
Goodchild, Anselin, Appelbaum, and Harthorn (2000) suggest that the importance of the 
spatial approach in social science literature is growing. They explain that environmental and 
climate change issues necessarily drive human effects, such as migration, urbanization, 
industrialization, and differences in population growth by region. To consider the relationship 
between socioeconomic and physical changes, it is necessary to conduct spatial analyses. 

3. Methods 
This study empirically examines the effects of economic activities on air pollution, especially 
particulate matter (i.e., PM2.5, PM10). We use monthly regional data from Korea spanning 
from January 2016 to April 2021. The sample area includes 16 Korean cities. Conducting 
the analysis on a monthly rather than an annual basis (i.e., the analysis based on a higher 

                                                        
5 In some different aspects, studies in the field of financial economics analyze the various aspects 

of emission allowance markets (Hanif, Hernandez, Mensi, Kang, Uddin, and Yoon, 2021; Kim, 
Ahn, and Ryu, 2014; Kim, Park, and Ryu, 2017). 
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frequency dataset) is important because air pollution emissions have large regional and 
seasonal impacts. The econometric model to test the effects of economic activities on air 
pollution is as follows: 

 ௜ܲ௧ ൌ ߙ ൅ ଵߚ ௜ܺ௧ ൅ ௜ݑ ൅ ݁௜௧ .     (1) 

Here, ௜ܲ௧, the dependent variable, represents air pollution emissions in region i in month t. 
௜ܺ௧ is a vector of independent variables. The independent variables include socioeconomic 

activities known to cause air pollution in Korea, such as chemical product manufacturing, 
petroleum product manufacturing, diesel consumption, and the coal electricity trading 
volume. We also consider alternative energy, such as new and renewable energy (NRN) 
trading volumes, to reflect efforts to reduce air pollution. Regional weather factors, such as 
the number of precipitation days, are included as independent variables (Shim, Kim, Kim, 
and Ryu, 2015; Shim, Kim, and Ryu, 2017). ݑ௜ represents household fixed effects, and ݁௜௧ 
is the error term. 

The spatial panel model is used to consider spatial autocorrelation. It is confirmed that there 
is a spatial autocorrelation and time dependence in the dependent variable, and it is 
assumed that the dependent variable is also affected by independent variables in their 
neighboring areas. The panel Spatial Durbin model (SDM) is as follows: 

 ௜ܲ௧ ൌ ߩ ௜ܹ௝ ௝ܲ௧ ൅ ଵߚ ௜ܺ௧ ൅ ߠ ௝ܺ௧ ௜ܹ௝ ൅ ௜ݑ ൅ ݁௜௧.     (2) 

Here, the new parameters, ߠ and ߩ, are the spatial autocorrelation coefficients. ߩ ௜ܹ௝ ௝ܲ௧ is 
the spatial dependence in the dependent variable. ߠ ௝ܺ௧ ௜ܹ௝, the spatial weighted effects of 
the independent variable in region j in month t. ௜ܹ௝, the spatial weighted matrix.  

Table 1 lists the variables used in the model. We use major public data to analyze the 
relationship between economic activities and air pollution levels. Air pollution index data are 
collected from AirKorea. In addition, data on economic activity are collected from the Korean 
Statistical Information Service and the Korea Meteorological Administration. To measure air 
pollution (i.e., the dependent variable), this study uses PM10 and PM2.5 data from AirKorea. 
Since December 2005, AirKorea has provided the most reliable air quality data to the public. 
The PM10 index refers to fine dust with a diameter less than 10/1000mm, and the PM2.5 
index refers to fine dust with a diameter less than 2.5/1000mm. Data on both PM10 and 
PM2.5 emissions are released by the Korean Ministry of Environment on the AirKorea 
website. The variable of Chemicals is the manufacturing production index for chemical goods 
and chemicals, excluding pharmaceuticals. Petroleum is the manufacturing production index 
for coke, briquettes, and petroleum products. Diesel refers to the amount of diesel consumed 
by product and region. Coal refers to the electricity trading volume of bituminous and 
anthracite coal. The electricity trading volume of new and renewable energy is represented 
as NRN. In Korea, the term “new and renewable energy” means the sum of the words “new 
energy” and “renewable energy”. The term “new energy” refers to any energy that is 
converted from existing fossil fuels. The term “renewable energy” refers to any energy that 
is converted from renewable energy, including sunlight, water, geothermal energy, 
precipitation, biological organisms, etc. This definition comes from Article 2 of the Act on the 
Promotion of the Development, Use and Diffusion of New and Renewable Energy (Act No. 
17533). 6  It refers to eleven fields, including solar energy, bioenergy, wind energy, 
hydropower, fuel cells, coal liquefaction and gasification, heavy residual oil gasification, 

                                                        
6 Source: Korean Law Information Center (https://www.law.go.kr/LSW/eng/engMain.do). 
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marine energy, waste, geothermal energy, and hydrogen. Rain is the number of precipitation 
days with daily precipitation of 0.1 mm or more in each region. The number of precipitation 
days is considered a variable, not the amount of precipitation. The reason is not how much 
rain has fallen, but because it is important to wash away particulate matter in the atmosphere 
due to rain. 

Table 1. Variables of the Model 

 Definition 
PM10 Particulate matter 10 index (μg/m³) 
PM2.5 Particulate matter 2.5 index (μg/m³) 

Chemicals 
Manufacturing production index of chemical goods and chemicals, excluding
pharmaceuticals (2015=100) 

Petroleum 
Manufacturing production index of coke, briquettes, and petroleum products
(2015=100) 

Diesel Diesel consumption by product and region (thousand barrels) 
Coal Electricity trading volume: bituminous and anthracite coal (MW) 
NRN Electricity trading volume: new and renewable energy total (MW) 
Rain Number of days with daily precipitation of 0.1mm or more by region (days) 

Note: The first column shows the variables of the model. The second column (Definition) shows 
the definitions of each variable. Definition sources: AirKorea. Korean Statistical Information 
Service, and Korea Meteorological Administration. 

Table 2 presents summary statistics for the variables used in this model.  

Table 2. Descriptive Statistics 

 Mean Std. Dev. Minimum Maximum 
PM10 40.62 11.97 15 79 
PM2.5 22.68 7.05 9 47 
Chemicals 111.74 44.34 0 433.2 
Petroleum 74.15 54.53 0 266.2 
Diesel 866.12 731.89 163 4,153 
Coal 1,099.46 2,189.09 0 10,461.32 
NRN 119.92 145.88 0.59 775.9 
Rain 8.49 3.73 0 22.4 
Note: The first column shows the variables of the model. The second column (Mean) shows 
the average of each variable, and the third column (Std. Dev.) shows the standard deviation 
of each variable. The fourth (Minimum) and fifth (Maximum) columns present the minimum 
and maximum values of each variable, respectively. 
 

The mean values of PM10 and PM2.5 are 40.62 μg/m³ and 22.68 μg/m³, respectively. Fine 
dust has large seasonal and daily variations, meaning that the average over the entire period 
should be discussed carefully. However, the mean value of PM2.5 is above Korea’s national 
ambient air quality standard (AAQS). Air quality standards are generally set by considering 
not only the WHO’s limitations but also each country’s local circumstances, such as its 
current pollution level, its social and economic development stages, political decisions, and 
technological aspects. The AAQS is based on the WHO’s interim target as of 2005 and is 
15 μg/m³ or less (yearly) and 35 μg/m³ or less (24-hour period) for PM2.5. The AAQS for 
PM10 is 50 μg/m³ or less (yearly) and 100 μg/m³ or less (24-hour period). The mean 
manufacturing production index (2015=100) of chemical goods and chemicals, excluding 
pharmaceuticals, is 111.74 per month. The mean manufacturing production index 
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(2015=100) of coke, briquettes, and petroleum products is 74.15 per month. The mean 
consumption of diesel by product and region is 866.12 thousand barrels per month. The 
mean trading volume of electricity coal power, defined as the sum of the bituminous and 
anthracite coal power trading volumes, is 1,099.46 MW per month. The mean new and 
renewable energy trading volume is 119.92 MW per month. The mean number of 
precipitation days is approximately eight per month.  

4. Results 
The dataset analyzed in our study contains observations on geographical areas. In this case, 
when the dependent variable is spatial data, it is appropriate to use the spatial analysis 
model as in several previous studies on environmental research (Anselin, 1988, 2001; 
Bockstael, 1996). Therefore, first, we use the traditional panel regression analysis. Second, 
the statistically significant spatial dependency or heterogeneity is confirmed through 
Pesaran’s CD test. After that, we use the spatial econometric model in consideration of 
spatial correlation in order to expand the analysis.  

Table 3 presents the results of the analysis to determine the effects of the factors on the 
levels of air pollution emissions, especially PM10 and PM2.5 emissions. First, we use the 
pooled ordinary least squares (OLS) model. According to the result of the Breusch-Pagan 
Lagrangian Multiplier (LM) test, the null hypothesis is rejected at the 1% significance level 
because the p-value is lower than 0.01 (PM10: LM test = 45.68, p-value = 0.000, PM2.5: LM 
test = 212.27, p-value = 0.000). Therefore, the panel model is the appropriate method, rather 
than using the pooled OLS. In addition, when there is no correlation between the error terms 
at all time t, and the variance of the error terms is all the same, the pooled OLS estimator 
becomes the best linear unbiased estimator (BLUE). According to the result of the likelihood 
ratio (LR) test, the null hypothesis is rejected at the 1% significance level because the p-
value is lower than 0.01 (PM10: LR test = 32.75, p-value = 0.005, PM2.5: LR test = 73.47, 
p-value = 0.000). Therefore, there is heteroskedasticity in this panel data. We test whether 
PM10 and PM2.5 emissions contain a unit root for the panels using the IPS unit-root test. 
According to the unit-root test, the p-value corresponding to Z-t-tilde-bar is essentially zero, 
so we strongly reject the null hypothesis that all series contain unit roots. The panel data 
needs to identify the autocorrelation issue. If there is autocorrelation in the panel dataset, a 
bias occurs in the standard error, and the efficiency of the estimate decreases. The 
Wooldridge test is used to test the autocorrelation of panel data. According to the Wooldridge 
test for autocorrelation in panel data, the p-value is lower than 0.01 (PM10: Wooldridge F-
test = 88.22, p-value = 0.000, PM2.5: Wooldridge F-test = 72.94, p-value = 0.000) and there 
is a first-order autocorrelation in panel data. If there are both heteroskedasticity and 
autocorrelation in panel data, the panel generalized least squares (GLS) should be used to 
obtain an efficient estimator. The second and third columns of Table 3 show the results of 
estimating pooled OLS and panel GLS models for PM10. The pooled OLS method shows 
that the manufacturing production index of chemical goods and chemicals, the amount of 
diesel consumed by product and region, and the electricity trading volume of bituminous and 
anthracite coal have statistically positive effects on PM10 emissions. Thus, PM10 emissions 
increase as these three variables increase. Both the electricity trading volume of new and 
renewable energy sources and the number of precipitation days by region have statistically 
significant effects on PM10 emissions. As the volume of new and renewable energy 
increases, PM10 emission level decreases. As the number of precipitation days increases, 
the PM10 emission level decreases, as well. However, the pooled OLS method has 
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considerable limitations because this study analyzes panel data. The results of estimating 
the GLS model show that the manufacturing production index of chemical goods and 
chemicals has a statistically positive effect on PM10 emissions. Diesel consumption by 
product and region also has a statistically positive effect on PM10 emissions. That is, as 
both the manufacturing production index of chemical goods and diesel consumption 
increase, PM10 emissions increase. Additionally, the number of precipitation days per region 
is negatively associated with PM10 emissions. The electricity trading volume of new and 
renewable energy sources has a negative effect on PM10 emissions, but it is not statistically 
significant. In addition, neither the manufacturing production index of coke, briquettes, and 
petroleum products nor the electricity trading volume of bituminous and anthracite coal have 
statistically significant effects on PM10 emissions. 

Table 3. Estimation results using panel data 

 Pooled OLS 
(PM10) 

GLS 
(PM10) 

Pooled OLS 
(PM2.5) 

GLS 
(PM2.5) 

Chemicals 0.0278*** 
(0.0077) 

0.0305** 
(0.0103) 

0.0182*** 
(0.0046) 

0.0150* 
(0.0060) 

Petroleum -0.0054 
(0.0074) 

0.0140 
(0.0094) 

0.0080* 
(0.0044) 

0.0162** 
(0.0056) 

Diesel 0.0024*** 
(0.0005) 

0.0021* 
(0.0009) 

0.0010*** 
(0.0003) 

0.0012* 
(0.0006) 

Coal 0.0007*** 
(0.0002) 

0.0001 
(0.0003) 

0.0002 
(0.0001) 

-0.0000 
(0.0002) 

NRN -0.0108*** 
(0.0031) 

-0.0041 
(0.0046) 

-0.0052*** 
(0.0019) 

-0.0033 
(0.0027) 

Rain -1.3520*** 
(0.0929) 

-0.8640*** 
(0.0746) 

-0.6902*** 
(0.0558) 

-0.4234*** 
(0.0420) 

Constant 47.8238*** 
(1.3310) 

41.7885*** 
(1.6328) 

25.5345*** 
(0.7992) 

22.3266*** 
(0.9352) 

Observations 1,024 1,024 1,024 1,024 
Note: The first column shows the variables of the model. The second column shows the results 
of estimating the pooled OLS model for PM10. The third column shows the results of estimating 
the GLS model for PM10. The fourth column shows the results of estimating the pooled OLS 
model for PM2.5. The fifth column shows the results of estimating the GLS model for PM2.5. 
Standard errors are shown in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. Data sources: 
AirKorea. Korean Statistical Information Service, and Korea Meteorological Administration, 
January 2016 to April 2021. 

The fourth and fifth columns of Table 3 present the results of estimating pooled OLS and 
GLS models for PM2.5, respectively. The pooled OLS results show that PM2.5 emissions 
increase clearly as the manufacturing production index of the chemical goods and 
chemicals, and the diesel consumption amount increase. PM2.5 emissions increase as the 
coke, briquette, and petroleum product manufacturing index increases with the pooled OLS 
model, as well. These three variables have statistically positive effects on PM2.5 with the 
pooled OLS model. The GLS analysis results of PM2.5 are slightly different from the pooled 
OLS results of PM2.5. The results of the GLS analysis show that PM2.5 emissions increase 
as the manufacturing production index of the chemical goods and chemicals increases. The 
diesel consumption and the manufacturing production index of coke, briquettes, and 
petroleum products have a statistically positive effect on PM2.5 emissions with the GLS 
model, as well. In summary, according to the GLS analysis results, the manufacturing 
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production index of petroleum products affects not PM10 but PM2.5 emissions. The 
electricity trading volume of bituminous and anthracite coal does not statistically significantly 
affect both PM10 and PM2.5 emissions with the GLS model. The electricity trading volume 
of new and renewable energy sources has a negative effect on PM2.5 emissions, but it is 
not statistically significant. It contrasts with the fact that the electricity trading volume of new 
and renewable energy sources has a statistically significant effect on both PM10 and PM2.5 
emissions according to the pooled OLS analysis results. The number of precipitation days 
has statistical effects on PM2.5 and these results are similar to that of PM10. As the number 
of precipitation days increases, PM2.5 emissions decrease. 

Next, we expand our analysis by applying spatial econometrics. Although the panel GLS 
model describes the air pollution panel data, it ignores the spatial dependence among the 
units. Compared to the traditional regression analysis, the spatial panel model controls the 
spatial dependences. The spatial panel model explains the time series observations of 
spatial units more effectively. Air pollution is differentiated from other pollution in that it is 
transboundary pollution. That is, it is important to consider spatial relationships because air 
pollution is regionally dependent. Therefore, we analyze the data using a spatial panel model 
to reduce the error of estimation and increase accuracy through consideration of both time 
and spatial dependencies. Moran (1948) and Geary (1954) explain that there is a question 
of whether some phenomenon in an area (e.g., country, states, etc.) occurs statistically 
independent of the neighboring areas, and it is essential to consider the geographical 
distribution. Moran’s I is generally used to verify that spatial correlation exists. However, it is 
not an appropriate test for the panel data, so we use Pesaran’s CD test (Pesaran, Ullah, and 
Yamagata, 2008; Pesaran, 2015). According to the result of the Pesaran’s test of cross-
sectional independence, the null hypothesis is rejected at the 1% significance level because 
the p-value is lower than 0.01 (PM10: Pesaran’s test = 72.22, p-value = 0.000, PM2.5: 
Pesaran’s test = 65.80, p-value = 0.000). Therefore, there is a cross-regional correlation in 
this panel data. In addition, we check cross-sectional independence using additional test 
such as Frees’ test (PM10: Frees’ test = 10.156, p-value = 0.0000, PM2.5: Frees’ test = 9.01, 
p-value = 0.000). and Friedman’s test (PM10: Friedman’s test = 820.04, p-value = 0.000, 
PM2.5: Friedman’s test = 775.90, p-value = 0.000). Both test results also show that there is 
a cross-regional correlation. 

Through several tests, it is confirmed that the data set used in our study is spatial data with 
spatial autocorrelation. That is, the more spatially adjacent it is, the more similar the 
characteristics are and the higher the correlation is. Therefore, it is important to define the 
spatial neighborhood to estimate the spatial econometrics model, and the spatial proximity 
among regions is indicated by the spatial weighted matrix. There are two ways to define the 
spatial weighted matrix: spatial contiguity and spatial distance. First, we measure the spatial 
contiguity in the Queen method to define the spatial weighted matrix ( ௔ܹ ). The Queen 
method defines that the two regions are spatially adjacent to each other when the boundaries 
(sides or edges) of the two regions are shared. In this case, the weight in the spatial weighted 
matrix is 1. Otherwise, the weight in the matrix is 0. Equation (3) shows the spatial weighted 
matrix ( ௔ܹ) using the Queen method. It is a 16 by 16 matrix and it contains one island which 
is called Jeju-do. There are three regions with the largest number of links: Chungcheongbuk-
do, Gyeongsangbuk-do, and Gyeongsangnam-do. 
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 ௔ܹ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0
1 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 1 1 0 1 1 0 1 0 0
0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0
0 1 1 0 0 0 1 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ے0

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (3) 

 
Second, we define the spatial weighted matrix ( ௕ܹ) based on geographical distances among 
regions. Calculate the geographical distance between the centre of one region and the 
centre of another region, and construct a matrix using this calculated value instead of 0 and 
1. In this case, it is possible to distinguish the difference in the degree of proximity, rather 
than being adjacent (0 and 1) between regions. 
We estimate the panel SDM with spatial fixed effect to analyze the effects of economic 
activities on air pollution and the results are shown in Table 4. The panel SDM(a) and (b) 
show the estimation results using the spatial weighted matrix ( ௔ܹ) and spatial weighted 
matrix ( ௕ܹ), respectively. The spatial weighted matrix ( ௔ܹ) is defined as the spatial contiguity 
in the Queen method and spatial weighted matrix ( ௕ܹ) is defined based on geographical 
distances (km; kilometre). 

Table 4. Spatial Durbin Model Results  

 SDM (a) 
(PM10) 

SDM (b) 
(PM10) 

SDM (a) 
(PM2.5) 

SDM (b) 
(PM2.5) 

Chemicals 0.0026 
(0.0043) 

-0.0091** 
(0.0045) 

-0.0020 
(0.0029) 

-0.0049 
(0.0032) 

Petroleum 0.0109*** 
(0.0039) 

0.0168*** 
(0.0043) 

0.0077*** 
(0.0026) 

0.0155*** 
(0.0031) 

Diesel -0.0007 
(0.0014) 

-0.0004 
(0.0016) 

-0.0017* 
(0.0009) 

-0.0021* 
(0.0011) 

Coal -0.0001 
(0.0003) 

-0.0001 
(0.0003) 

-0.0003 
(0.0002) 

-0.0004 
(0.0002) 

NRN -0.0137*** 
(0.0025) 

-0.0119*** 
(0.0026) 

-0.0100*** 
(0.0017) 

-0.0097*** 
(0.0019) 

Rain -0.2873*** 
(0.0893) 

-0.4797*** 
(0.0641) 

-0.0347 
(0.0601) 

-0.2082*** 
(0.0463) 

W*Chemicals -0.0119 
(0.0084) 

0.0711*** 
(0.0144) 

-0.0026 
(0.0057) 

0.0401*** 
(0.0103) 

W*Petroleum -0.0113* 
(0.0060) 

-0.0227*** 
(0.0084) 

-0.0064 
(0.0040) 

-0.0144** 
(0.0061) 

W*Diesel 0.0013 0.0007 0.0021** 0.0021 
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 SDM (a) 
(PM10) 

SDM (b) 
(PM10) 

SDM (a) 
(PM2.5) 

SDM (b) 
(PM2.5) 

(0.0015) (0.0025) (0.0010) (0.0018) 
W*Coal -0.0006 

(0.0005) 
-0.0001 
(0.0011) 

0.0005* 
(0.0003) 

0.0011 
(0.0008) 

W*NRN 0.0130*** 
(0.0036) 

0.0033 
(0.0081) 

0.0027 
(0.0024) 

-0.0007 
(0.0059) 

W*Rain 0.0572 
(0.0984) 

0.2376*** 
(0.0823) 

-0.1178* 
(0.0661) 

0.0470 
(0.0595) 

Spatial rho () 0.8578*** 
(0.0107) 

0.8725*** 
(0.0116) 

0.8126*** 
(0.0128) 

0.8344*** 
(0.0152) 

Log-likelihood -3060.2607 -3026.7907 -2627.2338 -2678.5076 
R-sq 0.2308 0.3622 0.2415 0.3599 
Hausman test 212.60*** 140.54*** 104.21*** 380.11*** 
Observations 1,024 1,024 1,024 1,024 
Note: The first column shows the variables of the model. The second column shows the results 
of estimating the SDM(a) with a spatial weighted matrix ( ௔ܹ) and the third column shows the 
results of estimating the SDM(b) with a spatial weighted matrix ( ௕ܹ) for PM10. The fourth column 
shows the results of estimating the SDM(a) with a spatial weighted matrix ( ௔ܹ) and the fifth 
column shows the results of estimating the SDM(b) with a spatial weighted matrix ( ௕ܹ) for PM2.5. 
The spatial weighted matrix ( ௔ܹ) is defined based on spatial contiguity using the Queen method. 
The spatial weighted matrix ( ௕ܹ) is defined based on geographical distances among regions. The 
first line describes each model. The second to sixth lines shows the direct effect of changes in 
dependent variables due to changes in each variable. Line seven to twelve shows the indirect 
effects considering spatial dependency. The thirteenth line shows the spatial dependence of each 
model. Standard errors are shown in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. Data sources: 
AirKorea, Korean Statistical Information Service, and Korea Meteorological Administration, 
January 2016 to April 2021. 

The SDM results show the spatial rho () of the SDM analysis for PM10 and PM2.5. The 

spatial rho () values for PM10 and PM2.5 in SDM(a) are 0.8578 and 0.8126, respectively. 

The spatial rho () values for PM10 and PM2.5 in SDM(b) are 0.8725 and 0.8344, 

respectively. All four rho () values are statistically significant, which means that the 
dependent variables, PM10 and PM2.5, have inter-regional effects. According to the spatial 
rho () values in Table 4, the analysis using the spatial weighted matrix ( ௕ܹ) based on 
geographical distances more clearly shows the spatial effects than the spatial weighted 
matrix ( ௔ܹ).  

Table 4 shows that the manufacturing production index of petroleum products has a 
statistically positive effect on PM10 and PM2.5 directly. In direct effects, both PM10 and 
PM2.5 emission levels decrease as new and renewable energy volumes increase. In main 
effects, as the number of precipitation days increases, PM10 emission decreases. However, 
the PM2.5 emission level decreases as the number of precipitation days increase only in 
SDM(b). The number of precipitation days has a negative effect on PM2.5 emission level in 
SDM(a) but it is not statistically significant. Comparing Tables 3 and 4, it is confirmed the 
negative relationship between new and renewable energy volumes and air pollution 
emissions in both pooled OLS and SDM. However, the pooled OLS estimates are slightly 
underestimated as compared to SDM. That is, the new and renewable energy effects on air 
pollution are greater with spatial dependence. The GLS estimates are also slightly 
underestimated as compared to SDM but not statistically significant. The weather conditions, 
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especially the number of precipitation days, on the other hand, are slightly overestimated by 
the GLS model. That is, the effect of precipitation days on air pollution is smaller with spatial 
dependence. Next, the indirect effects, that is the effect of a change in a specific variable on 
the dependent variable in an adjacent region, are derived by the SDM estimation. The 
manufacturing production index of the chemical goods and chemicals in one region 
increases the PM10 and PM2.5 emission levels in neighboring regions and it is statistically 
significant in the SDM(b). The diesel consumption and the trading volume of electricity coal 
power have statistically positive effects on the PM2.5 emission level in neighboring regions 
in the SDM(a). As the precipitation days increase, the PM2.5 emission level decreases in 
neighboring regions in the SDM(a). However, as the new and renewable energy volumes 
increase, the PM10 emission level increases in neighboring regions in the SDM(a). As the 
precipitation days increase, the PM10 emission level increases in neighboring regions in the 
SDM(b). 

We estimate the panel Spatial autoregressive (SAR) model with spatial fixed effect to 
analyze the effects of economic activities on air pollution and the results are shown in Table 
5. It shows that the manufacturing production index for coke, briquettes, and petroleum 
products increases both PM10 and PM2.5 emission levels using SAR(b).  

Table 5. Spatial Autoregressive Model Results 

 SAR (a) 
(PM10) 

SAR (b) 
(PM10) 

SAR (a) 
(PM2.5) 

SAR (b) 
(PM2.5) 

Chemicals 0.0040 
(0.0043) 

-0.0112** 
(0.0046) 

-0.0017 
(0.0029) 

-0.0058* 
(0.0033) 

Petroleum 0.0058 
(0.0036) 

0.0111*** 
(0.0038) 

0.0065*** 
(0.0024) 

0.0131*** 
(0.0027) 

Diesel -0.0001 
(0.0012) 

0.0006 
(0.0013) 

-0.0005 
(0.0008) 

-0.0008 
(0.0009) 

Coal -0.0001 
(0.0003) 

-0.0002 
(0.0003) 

-0.0003 
(0.0002) 

-0.0003 
(0.0002) 

NRN -0.0137*** 
(0.0025) 

-0.0112*** 
(0.0026) 

-0.0097*** 
(0.0016) 

-0.0094*** 
(0.0019) 

Rain -0.2233*** 
(0.0393) 

-0.3102*** 
(0.0408) 

-0.1142*** 
(0.0260) 

-0.1577*** 
(0.0290) 

Spatial rho () 0.8518*** 
(0.0108) 

0.8752*** 
(0.0108) 

0.8129*** 
(0.0126) 

0.8412*** 
(0.0137) 

Log-likelihood -3072.0004 -3047.9729 -2634.1816 -2691.3393 
R-sq 0.2225 0.2218 0.2042 0.2377 
Hausman test 37.04*** 18.82*** 72.56*** 16.83** 
Observations 1,024 1,024 1,024 1,024 
Note: The first column shows the variables of the model. The second and fourth columns show 
the results of estimating the SAR(a) with a spatial weighted matrix ( ௔ܹ) for PM10 and PM2.5, 
respectively. The third and fifth columns show the results of estimating the SAR(b) with a spatial 
weighted matrix ( ௕ܹ) for PM10 and PM2.5, respectively. The spatial weighted matrix ( ௔ܹ) is 
defined based on spatial contiguity using the Queen method. The spatial weighted matrix ( ௕ܹ) is 
defined based on geographical distances among regions (km; kilometer). Standard errors are 
shown in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. Data sources: AirKorea, Korean 
Statistical Information Service, and Korea Meteorological Administration, January 2016 to April 
2021. 
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In addition, as the number of precipitation days, and electricity trading volume of new and 
renewable energy increase, both PM10 and PM2.5 emission levels decrease in neighboring 
regions using both SDM(a) and (b). The spatial rho values for PM10 and PM2.5 in SAR are 
statistically significant, which means that the dependent variables, PM10 and PM2.5, have 
inter-regional effects. According to the SAR results, both PM10 and PM2.5 emission levels 
decrease as new and renewable energy volumes increase. As the number of precipitation 
days increases, both PM10 and PM2.5 emission levels decrease in the SAR model. These 
results are similar to those of SDM. 

To select the model, we perform the LR test and the Wald test. According to the result of the 
LR test, the null hypothesis is rejected at the 1% significance level because the p-value is 
lower than 0.01 (PM10: LR test = 23.48, p-value = 0.000, PM2.5: LR test = 13.90, p-value = 
0.001). Therefore, the SDM is a statistically significant improvement in model fit. In addition, 
the SDM is a statistically significant improvement in model fit even according to a Wald test 
(PM10: Wald test = 23.91, p-value = 0.001, PM2.5: Wald test = 13.98, p-value = 0.030). 

5. Conclusion 
Environmental issues create inequity. Air pollution is caused by people who actively 
participate in economic activities, whereas socially disadvantaged people bear more of its 
costs. For example, purchasing a household air pollution filter or air purifier is costly, and 
some people must live or work in polluted environments without proper air pollution filters. 
For this reason, it is important to accurately identify the causes of air pollution and develop 
effective countermeasures. Nowadays, the emerging countries are constantly generating air 
pollution, as the developed countries in the past. Emerging countries have just begun to take 
an interest in the environmental issues. However, it is important to study air pollution in 
Korea, where particulate matter emissions are serious.  

Findings from this study confirm that some economic activities affect air pollution. First, some 
economic activities, such as manufacturing of chemical products and chemicals, and diesel 
consumption increase both PM10 and PM2.5 emission levels according to the GLS 
estimates. The manufacturing index of coke, briquette, and petroleum product only affects 
the increase in PM2.5 emission level according to the GLS estimates. Second, both PM10 
and PM2.5 emission levels in neighboring regions increase as the manufacturing of chemical 
products and chemicals increases using SDM(b). Diesel consumption also has a positive 
effect on PM10 and PM2.5 emission levels in neighboring regions but it has a statistically 
significant effect on only PM2.5 using SDM(a). Third, as the number of precipitation days 
increases, both PM10 and PM2.5 emission levels decrease according to the GLS, SDM(a), 
and (b) estimates. However, the number of precipitation days does not have a statistically 
significant effect on PM2.5 in the SDM(a). Finally, we forecast that both PM10 and PM2.5 
levels will continue to increase unless an alternative to chemicals, diesel, and petroleum 
products can be identified. However, according to SDM(a) and (b), serious levels of pollution 
may not necessarily arise in the future, as using new and renewable energy lowers the levels 
of both PM10 and PM2.5. The Korean government announced a basic plan for renewable 
energy to respond to the climate crisis and aimed to achieve 10.3% renewable energy in 
2025 and 14.3% renewable energy in 2030 (Korea Energy Agency, 2020). According to the 
Seoul metropolitan government, they are installing a ‘total energy station (TES)’ to charge 
electric vehicles and fuel cell vehicles using photovoltaics, and the municipal government is 
increasing financial investments for TES. Through these efforts, the government aims to 
reduce fossil fuels and increase the supply of new and renewable energy instead as part of 
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the ‘Seoul Vision 2030’ which is one of the climate action plans. The plan is to increase the 
fraction of renewable energy supply from 4.3% (0.8GW) by 2021 to 21% (2.4GW) by 2030.7 
Thus, air pollution may decline in the future because the use of new and renewable energy 
is increasing in both developed countries in Europe and emerging countries in Asia. 

A sound environment is not just an additional pleasure, but a goal that must be achieved to 
promote one’s social welfare. Environmental damage imposes high social costs on both 
developed and developing countries through health spending. Thus, from a long-term 
perspective, an environmental impact assessment should be considered in establishing 
national policies. It begins with an understanding of the current status of countries suffering 
from serious air pollution. Thus, these findings may help to check whether atmosphere 
environmental regulations are properly designed to reduce air pollutants. In addition, these 
findings contribute to predicting the future levels of air pollutants. 
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