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Time series: entropy and informational energy 
George Daniel Mateescu1 

 

Abstract. In the present work, we propose to investigate the possibility of using, in the analysis of 

data series, some notions similar to the entropy and the informational energy of a random 

distribution. Using these tools it is possible to appreciate some characteristics of the data series, 

exemplified in the article by the linear model. 
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Context. We remember that a probability distribution is given  

(𝑝𝑖), 𝑖 = 1. .𝑚 

then the Shannon entropy is: 

∑ −𝑝𝑖𝑙𝑜𝑔(𝑝𝑖)

𝑖=1..𝑚

 

The main property ([1]) is the maximum value, which is reached in the case of equal probabilities,  

𝑝𝑖 =
1

𝑚
, 𝑖 = 1. .𝑚, ∑ −

1

𝑚
𝑙𝑜𝑔 (

1

𝑚
)

𝑖=1..𝑚

= log⁡(𝑚) 

In the case of a deterministic distribution, with a single value 𝑝 = 1, the entropy is 0. 

Starting from this definition, we consider a series of data: 

(𝑦𝑖)𝑖=0..𝑛 

whose values are in the interval (𝑎, 𝑏]. 
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We consider a division of it 

𝑎 = 𝑎0 < 𝑎1 < ⋯ < 𝑎𝑚 = 𝑏 

as well as the associated frequencies: 

𝑧𝑖 = 𝑐𝑎𝑟𝑑{𝑦𝑘|𝑦𝑘 ∈ (𝑎𝑖−1, 𝑎𝑖], 𝑘 ∈ [0,…𝑛]}, 𝑖 = 1. .𝑚 

and  

𝑍 = ∑ 𝑧𝑖
𝑖=1..𝑚

 

We put by definition 

𝑝𝑖 =
𝑧𝑖
𝑍
, 𝑖 = 1. .𝑚 

Therefore, we can associate entropy with the data series ([1] Claude Shannon, A Mathematical 

Theory of Communication): 

∑ −𝑝𝑖𝑙𝑜𝑔(𝑝𝑖)

𝑖=1..𝑚

 

in which we define 𝑝𝑖𝑙𝑜𝑔(𝑝𝑖) = 0 if 𝑝𝑖 = 0 (because lim
𝑥→0

𝑥𝑙𝑜𝑔(𝑥) = 0). 

 

Time series 

For such data series, the order of values is significant, the data are ordered. Consequently, it will be 

necessary to use some derived indicators. Such indicators are anyway used to eliminate, for example, 

systematic errors. 

We will exemplify by two ways of exploring the data order, respectively by arithmetic growth and by 

proportional growth, that is: 

𝑢𝑖 = 𝑦𝑖 − 𝑦𝑖−1, 𝑖 = 1. . 𝑛 

and 

𝑣𝑖 =
𝑦𝑖
𝑦𝑖−1

, 𝑖 = 1. . 𝑛, 𝑦𝑖−1 ≠ 0 

The periodic case. If the data series (𝑦𝑖)𝑖=0..𝑛 is periodic, then the histogram relative to an 

equidistant division has values proportional to those relative to a period. Consequently, the entropy 

of the entire data series is equal to the entropy relative to a period. Likewise, the data series derived 

by arithmetic growth or by proportional growth are periodic. 
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Indeed, if the data series is periodic, of period t, that is: 

𝑦𝑖 = 𝑦𝑖−𝑡 

then arithmetic and proportional growth are also periodic: 

𝑦𝑖 − 𝑦𝑖−1 = 𝑦𝑖−𝑡 − 𝑦𝑖−1−𝑡 

𝑦𝑖
𝑦𝑖−1

=
𝑦𝑖−𝑡
𝑦𝑖−1−𝑡

 

The linear case. If the data series (𝑦𝑖)𝑖=0..𝑛 is linear, then the histogram relative to an equidistant 

division with m intervals has constant values 
 

 

 

 

 

 

consequently the probabilities (𝑝𝑖)𝑖=1..𝑚 are equal, and the entropy is maximum. Instead, the data 

series derived by arithmetic growth has constant values, and the histogram has only one non-zero 

value, so the entropy is 0. 

Indeed, if the data series is of the form: 

𝑦𝑖 = 𝛼𝑥𝑖 + 𝛽 

and 

𝑥𝑖 − 𝑥𝑖−1 = ℎ(𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) 

then 

𝑦𝑖 − 𝑦𝑖−1 = 𝛼ℎ 

The exponential case. If the data series (𝑦𝑖)𝑖=0..𝑛 follows an exponential curve, for example having 

the points (values) on a shape curve 

𝑦
𝑖
= 𝛼𝑒𝑡𝑥𝑖 , 𝑥𝑖 − 𝑥𝑖−1 = ℎ 
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then 

𝑦𝑖
𝑦𝑖−1

=
𝛼𝑒𝑡𝑥𝑖

𝛼𝑒𝑡𝑥𝑖−1
= 𝑒𝑡ℎ 

That is, the data series derived by proportional growth is constant, having 0 entropy. 
 

Example, the linear model 
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The minimum value is 1.640411 and the maximum is 13.055548 and accordingly, we consider an 

equidistant division through 9 intervals, which corresponds to the nodes: 

1.640312 

2.90876 

4.177109 

5.445457 

6.713806 

7.982154 

9.250503 

10.51885 

11.7872 

13.05555 
 

and the frequencies 

2 

2 

5 

5 

3 

4 

4 

2 

2 
 

For entropy calculation we will have: 

probability logarithm 

0.068966  -0.08009 

0.068966  -0.08009 

0.172414  -0.13163 

0.172414  -0.13163 

0.103448  -0.10193 

0.137931  -0.11867 

0.137931  -0.11867 

0.068966  -0.08009 

0.068966  -0.08009 
 

Finally, the entropy is 0.922888, close to the maximum entropy which is log(9)=0.954243, 

corresponding to the linear model. 
  



6 
 

Informational energy. 

The notion was introduced by O. Onicescu in 1966 and is defined by 

𝐸(𝑝) = ∑ 𝑝𝑖
2

𝑖=1..𝑚

 

where (𝑝𝑖), 𝑖 = 1. .𝑚 is a probability distribution 

Some useful proprieties are ([2]): 

1

𝑚
≤ 𝐸(𝑝) ≤ 1 

and: entropy and informational energy are inversely proportional 
 

In the case of the previous example, the informational energy is 0.127229, close to the minimum 

value which is  
1

9
= 0.111111. 

Both criteria, entropy and informational energy, show that the data series in the example 

corresponds to a linear model. 
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